The effect of type 2 diabetes mellitus on multiple obstructive coronary artery disease
- PMID: 36789679
- DOI: 10.1111/echo.15539
The effect of type 2 diabetes mellitus on multiple obstructive coronary artery disease
Abstract
Background: Although type 2 diabetes mellitus (T2DM) individuals easily develop three-vessel disease (3VD) coronary artery disease (CAD), there is very little information available about their left ventricle (LV) functions. The purpose of this study is to evaluate the LV function using two-dimensional speckle tracking echocardiography (2-D STE) in T2DM patients with 3VD.
Methods: One hundred and three consecutive patients with confirmed 3VD CAD were enrolled and divided into two groups, while 53 patients with DM and 50 patients without. The control group was composed of 30 age- and sex-matched healthy individuals. All patients underwent 2-D STE and standard echocardiograms. The durations of DM and the level of HbA1c were also recorded.
Result: Between the 3VD-DM and 3VD-non-DM groups, normal echocardiography did not reveal any appreciable differences. However, patients with 3VD-DM had significantly lower global longitudinal strain (GLS) than those with 3VD-non-DM (15.87 ± 2.51 vs.17.56 ± 2.72, p < .05) by 2-D STE strain measurement. Besides, patients whose duration of DM excess 5 years showed significant lower GLS than those with less than 5 years duration (14.25 ± 2.31 vs. 16.65 ± 1.96, p = .007). However, there was no difference in GLS between the 3VD-DM patients with HbA1c ≥ 7% and HbA1c < 7%.
Conclusions: Compared to patients with 3VD alone, those with 3VD-DM have a lower cardiac function. In 3VD-DM patients, the duration of DM is a significant factor that contributes to cardiac function deterioration, whereas, the glucose control state has limited influence.
Keywords: coronary artery disease; speckle tracking imaging; strain; three-vessel CAD; type 2 diabetes mellitus.
© 2023 The Authors. Echocardiography published by Wiley Periodicals LLC.
Comment on
-
2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2019.Diabetes Care. 2019 Jan;42(Suppl 1):S13-S28. doi: 10.2337/dc19-S002. Diabetes Care. 2019. PMID: 30559228 Review.
References
REFERENCES
-
- Danaei G, Finucane MM, Lu Y, et al. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group (Blood Glucose) (2011) National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet;378(9785):31-40.
-
- Chareonthaitawee P, Sorajja P, Rajagopalan N, et al. Prevalence and prognosis of left ventricular systolic dysfunction in asymptomatic diabetic patients without known coronary artery disease referred for stress single-photon emission computed tomography and assessment of left ventricular function. Am Heart J. 2007;154(3):567-574.
-
- Aksakal E, Akaras N, Kurt M, et al. The role of oxidative stress in diabetic cardiomyopathy: an experimental study. Eur Rev Med Pharmacol Sci. 2011;15(11):1241-1246.
-
- Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation. 2005;111(16):2073-2085.
-
- Miki T, Yuda S, Kouzu H, Miura T. Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev. 2013;18(2):149-166.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous