Toward a taxonomy of trust for probabilistic machine learning
- PMID: 36791188
- PMCID: PMC9931201
- DOI: 10.1126/sciadv.abn3999
Toward a taxonomy of trust for probabilistic machine learning
Abstract
Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and beyond. To aid the development of trust in these decisions, we develop a taxonomy delineating where trust in an analysis can break down: (i) in the translation of real-world goals to goals on a particular set of training data, (ii) in the translation of abstract goals on the training data to a concrete mathematical problem, (iii) in the use of an algorithm to solve the stated mathematical problem, and (iv) in the use of a particular code implementation of the chosen algorithm. We detail how trust can fail at each step and illustrate our taxonomy with two case studies. Finally, we describe a wide variety of methods that can be used to increase trust at each step of our taxonomy. The use of our taxonomy highlights not only steps where existing research work on trust tends to concentrate and but also steps where building trust is particularly challenging.
Figures
References
-
- S. Flaxman, S. Mishra, A. Gandy, H. J. T. Unwin, T. A. Mellan, H. Coupland, C. Whittaker, H. Zhu, T. Berah, J. W. Eaton, M. Monod; Imperial College COVID- Response Team, A. C. Ghani, C. A. Donnelly, S. Riley, M. A. C. Vollmer, N. M. Ferguson, L. C. Okell, S. Bhatt, Estimating the effects of non-pharmaceutical interventions on COVID-19 in Europe. Nature 584, 257–261 (2020). - PubMed
-
- N. van Doremalen, T. Bushmaker, D. H. Morris, M. G. Holbrook, A. Gamble, B. N. Williamson, A. Tamin, J. L. Harcourt, N. J. Thornburg, S. I. Gerber, J. O. Lloyd-Smith, E. de Wit, V. J. Munster, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020). - PMC - PubMed
-
- R. J. Fischer, D. H. Morris, N. van Doremalen, S. Sarchette, M. Jeremiah Matson, T. Bushmaker, C. K. Yinda, S. N. Seifert, A. Gamble, B. N. Williamson, S. D. Judson, E. de Wit, J. O. Lloyd-Smith, V. J. Munster, Effectiveness of N95 respirator decontamination and reuse against SARS-CoV-2 virus. Emerg. Infect. Dis. 26, 2253–2255 (2020). - PMC - PubMed
-
- M. Heidemanns, A. Gelman, G. E. Morris, An updated dynamic Bayesian forecasting model for the US presidential election. Harv Data Sci Rev 22020). 10.1162/99608f92.fc62f1e1.
-
- A. Gelman, J. Hullman, C. Wlezien, G. E. Morris, Information, incentives, and goals in election forecasts. Judgm. Decis. Mak. 15, 863–880 (2020).
Publication types
LinkOut - more resources
Full Text Sources
