Volcanic CO2 degassing postdates thermogenic carbon emission during the end-Permian mass extinction
- PMID: 36791190
- PMCID: PMC9931219
- DOI: 10.1126/sciadv.abq4082
Volcanic CO2 degassing postdates thermogenic carbon emission during the end-Permian mass extinction
Abstract
Massive carbon dioxide (CO2) emissions are widely assumed to be the driver of the end-Permian mass extinction (EPME). However, the rate of and total CO2 released, and whether the source changes with time, remain poorly understood, leaving a key question surrounding the trigger for the EPME unanswered. Here, we assimilate reconstructions of atmospheric Pco2 and carbonate δ13C in an Earth system model to unravel the history of carbon emissions and sources across the EPME. We infer a transition from a CO2 source with a thermogenic carbon isotopic signature associated with a slower emission rate to a heavier, more mantle-dominated volcanic source with an increased rate of emissions. This implies that the CO2 degassing style changed as the Siberian Traps emplacement evolved, which is consistent with geochemical proxy records. Carbon cycle feedbacks from terrestrial ecosystem disturbances may have further amplified the warming and the severity of marine extinctions.
Figures




Similar articles
-
The great catastrophe: causes of the Permo-Triassic marine mass extinction.Natl Sci Rev. 2023 Oct 25;11(1):nwad273. doi: 10.1093/nsr/nwad273. eCollection 2024 Jan. Natl Sci Rev. 2023. PMID: 38156041 Free PMC article. Review.
-
Earth system instability amplified biogeochemical oscillations following the end-Permian mass extinction.Nat Commun. 2025 Apr 18;16(1):3703. doi: 10.1038/s41467-025-59038-0. Nat Commun. 2025. PMID: 40251165 Free PMC article.
-
Massive and rapid predominantly volcanic CO2 emission during the end-Permian mass extinction.Proc Natl Acad Sci U S A. 2021 Sep 14;118(37):e2014701118. doi: 10.1073/pnas.2014701118. Proc Natl Acad Sci U S A. 2021. PMID: 34493684 Free PMC article.
-
Six-fold increase of atmospheric pCO2 during the Permian-Triassic mass extinction.Nat Commun. 2021 Apr 9;12(1):2137. doi: 10.1038/s41467-021-22298-7. Nat Commun. 2021. PMID: 33837195 Free PMC article.
-
Theory and classification of mass extinction causation.Natl Sci Rev. 2023 Sep 8;11(1):nwad237. doi: 10.1093/nsr/nwad237. eCollection 2024 Jan. Natl Sci Rev. 2023. PMID: 38116094 Free PMC article. Review.
Cited by
-
The great catastrophe: causes of the Permo-Triassic marine mass extinction.Natl Sci Rev. 2023 Oct 25;11(1):nwad273. doi: 10.1093/nsr/nwad273. eCollection 2024 Jan. Natl Sci Rev. 2023. PMID: 38156041 Free PMC article. Review.
-
Brachiopods and forams reduced calcification costs through morphological simplification during mass extinction events.Nat Ecol Evol. 2025 Aug;9(8):1456-1468. doi: 10.1038/s41559-025-02749-w. Epub 2025 Jun 19. Nat Ecol Evol. 2025. PMID: 40537546
-
Thermal and nutrient stress drove Permian-Triassic shallow marine extinctions.Camb Prism Extinct. 2024 May 13;2:e9. doi: 10.1017/ext.2024.9. eCollection 2024. Camb Prism Extinct. 2024. PMID: 40078811 Free PMC article.
-
Respiratory protein-driven selectivity during the Permian-Triassic mass extinction.Innovation (Camb). 2024 Mar 28;5(3):100618. doi: 10.1016/j.xinn.2024.100618. eCollection 2024 May 6. Innovation (Camb). 2024. PMID: 38638583 Free PMC article.
-
Earth system instability amplified biogeochemical oscillations following the end-Permian mass extinction.Nat Commun. 2025 Apr 18;16(1):3703. doi: 10.1038/s41467-025-59038-0. Nat Commun. 2025. PMID: 40251165 Free PMC article.
References
-
- M. M. Joachimski, X. Lai, S. Shen, H. Jiang, G. Luo, B. Chen, J. Chen, Y. Sun, Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
-
- Y. Sun, M. M. Joachimski, P. B. Wignall, C. Yan, Y. Chen, H. Jiang, L. Wang, X. Lai, Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012). - PubMed
-
- B. Chen, M. M. Joachimski, S. Z. Shen, L. L. Lambert, X. L. Lai, X. D. Wang, J. Chen, D. X. Yuan, Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited. Gondw. Res. 24, 77–89 (2013).
-
- M. Joachimski, A. Alekseev, A. Grigoryan, Y. A. Gatovsky, Siberian trap volcanism, global warming and the Permian-Triassic mass extinction: New insights from Armenian Permian-Triassic sections. GSA Bull. 132, 427–443 (2020).
-
- Y. Cui, L. R. Kump, Global warming and the end-Permian extinction event: Proxy and modeling perspectives. Earth Sci. Rev. 149, 5–22 (2015).