Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 15;15(683):eabj3289.
doi: 10.1126/scitranslmed.abj3289. Epub 2023 Feb 15.

IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases

Affiliations

IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases

Stéphanie Lavazais et al. Sci Transl Med. .

Abstract

Innate immunity not only shapes the way epithelial barriers interpret environmental cues but also drives adaptive responses. Therefore, modulators of innate immune responses are expected to have high therapeutic potential across immune-mediated inflammatory diseases. IRAK4 is a kinase that integrates signaling downstream of receptors acting at the interface between innate and adaptive immune responses, such as Toll-like receptors (TLRs), interleukin-1R (IL-1R), and IL-18R. Because effects of IRAK4 inhibition are stimulus, cell type, and species dependent, the evaluation of the therapeutic potential of IRAK4 inhibitors requires a highly translational approach. Here, we profiled a selective IRAK4 inhibitor, GLPG2534, in an extensive panel of models of inflammatory skin diseases, translationally expanding evidence from in vitro to in vivo and from mouse to human. In vitro, IRAK4 inhibition resulted in substantial inhibition of TLR and IL-1 responses in dendritic cells, keratinocytes, granulocytes, and T cells but only weakly affected dermal fibroblast responses. Furthermore, disease activity in murine models of skin inflammation (IL-23-, IL-33-, imiquimod-, and MC903-induced) was markedly dampened by IRAK4 inhibition. Last, inhibiting IRAK4 reversed pathogenic molecular signatures in human lesional psoriasis and atopic dermatitis biopsies. Over the variety of models used, IRAK4 inhibition consistently affected central mediators of psoriasis (IL-17A) and atopic dermatitis (IL-4 and IL-13). Overall, our data highlight IRAK4 as a central player in skin inflammatory processes and demonstrate the potential of IRAK4 inhibition as a therapeutic strategy in chronic inflammatory skin diseases.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources