Nirmatrelvir exerts distinct antiviral potency against different human coronaviruses
- PMID: 36791846
- PMCID: PMC9925195
- DOI: 10.1016/j.antiviral.2023.105555
Nirmatrelvir exerts distinct antiviral potency against different human coronaviruses
Abstract
Nirmatrelvir is the main component of Paxlovid, an oral antiviral drug approved for the treatment of COVID-19 caused by SARS-COV-2 infection. Nirmatrelvir targets the main protease (Mpro), which is substantially conserved among different coronaviruses. Here, our molecular docking analysis indicates comparable affinity of nirmatrelvir binding to the Mpro enzymes of SARS-CoV-2 and three seasonal coronaviruses (OC43, 229E and NL63). However, in cell culture models, we found that nirmatrelvir potently inhibited SARS-CoV-2, OC43 and 229E, but not NL63. The insensitivity of NL63 to nirmatrelvir treatment was demonstrated at both viral replication and infectious titer levels. The antiviral activity of nirmatrelvir against OC43 and 229E was further confirmed in human airway organoids. The combination of nirmatrelvir and molnupiravir exerted differential patterns of antiviral response against OC43 and 229E. These results revealed disparities in the ability of nirmatrelvir to inhibit different coronaviruses, and caution against repurposing of nirmatrelvir as a pan-coronavirus treatment.
Keywords: Antiviral activity; Disparity; Nirmatrelvir; Pan-coronavirus.
Copyright © 2023 The Authors. Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Figures
References
-
- Dai W., Zhang B., Jiang X.M., Su H., Li J., Zhao Y., Xie X., Jin Z., Peng J., Liu F., Li C., Li Y., Bai F., Wang H., Cheng X., Cen X., Hu S., Yang X., Wang J., Liu X., Xiao G., Jiang H., Rao Z., Zhang L.K., Xu Y., Yang H., Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368:1331–1335. - PMC - PubMed
-
- Friesner R.A., Murphy R.B., Repasky M.P., Frye L.L., Greenwood J.R., Halgren T.A., Sanschagrin P.C., Mainz D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006;49:6177–6196. - PubMed
-
- Han Y., Yang L., Lacko L.A., Chen S. Human organoid models to study SARS-CoV-2 infection. Nat. Methods. 2022;19:418–428. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
