Can systemic immune inflammation index at admission predict in-hospital mortality in chronic kidney disease patients with SARS-CoV-2 infection?
- PMID: 36792308
- PMCID: PMC9922800
- DOI: 10.1016/j.nefroe.2021.09.009
Can systemic immune inflammation index at admission predict in-hospital mortality in chronic kidney disease patients with SARS-CoV-2 infection?
Abstract
Background and aim: Patients with chronic kidney disease (CKD) are susceptible to SARS-CoV-2 infection and more prone to develop severe disease. It is important to know predictors of poor outcomes to optimize the strategies of care.
Methods: 93 patients with CKD and 93 age-sex matched patients without CKD were included in the study. Data on demographic, clinical features, hematological indices and outcomes were noted and compared between the groups. Neutrophile to lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune inflammation index (SII) (platelet counts×neutrophil counts/lymphocyte counts) and lymphocyte-to-CRP ratio (LCR) were calculated on admission and the association of these markers with disease mortality in CKD patients was identified.
Results: CKD patients had higher risk of severe disease, and mortality compared to non-CKD patients (72% vs 50.5%, p=0.003, 36.6% vs 10.8%, p<0.001, respectively) and were more likely to have higher values of immuno-inflammatory indices (leukocyte count, neutrophil, NLR, SII and C-reactive protein, etc.) and lower level of lymphocyte and LCR. Also, higher levels of NLR, SII, PLR and lower level of LCR were seen in CKD patients who died compared to those recovered. In a receiver operating characteristic curve analysis, NLR, SII, PLR and LCR area under the curve for in-hospital mortality of CKD patients were 0.830, 0.811, 0.664 and 0.712, respectively. Among all parameters, NLR and SII gave us the best ability to distinguish patients with higher risk of death. Based on the cut-off value of 1180.5, the sensitivity and specificity of the SII for predicting in-hospital mortality were found to be 67.5% and 79.6%, respectively. The corresponding sensitivity and specificity of the NLR were 85.2% and 66.1%, respectively, at the cut-off value of 5.1. Forward stepwise logistic regression analysis showed that NLR (≥5.1), SII (≥1180.5) and LCR (≤9) were predictors for in-hospital mortality.
Conclusion: We report for the first time that SII is able to distinguish COVID-19 infected CKD patients of worse survival and it is as powerful as NLR in this regard. As SII is easily quantified from blood sample data, it may assist for early identification and timely management of CKD patients with worse survival.
Antecedentes y objetivo: Los pacientes con enfermedad renal crónica (ERC) son susceptibles a la infección por SARS-CoV-2 y más propensos a desarrollar una enfermedad grave. Es importante conocer los predictores de los malos resultados para optimizar las estrategias de atención.
Métodos: Se incluyeron en el estudio 93 pacientes con ERC y 93 pacientes sin ERC, emparejados por edad y sexo. Los datos sobre las características demográficas, clínicas, índices hematológicos y resultados, se anotaron y compararon entre los grupos. La proporción de neutrófilos a linfocitos (NLR), la proporción de plaquetas a linfocitos (PLR), el índice de inflamación inmunitaria sistémica (SII) (recuentos de plaquetas × recuentos de neutrófilos/recuentos de linfocitos) y la proporción de linfocitos a PCR (LCR) se calcularon en el momento de la admisión y se identificó la asociación de estos marcadores con la mortalidad por enfermedad en pacientes con ERC.
Resultados: Los pacientes con ERC tuvieron un mayor riesgo de enfermedad grave y mortalidad en comparación con los pacientes sin ERC (72% vs 50,5%, p = 0,003, 36,6% vs 10,8%, p < 0,001, respectivamente) y tuvieron más probabilidades de tener valores más altos de índices inmuno inflamatorios (recuento de leucocitos, neutrófilos, NLR, SII y proteína C reactiva, etc.) y niveles más bajos de linfocitos y LCR. Además, se observaron niveles más altos de NLR, SII, PLR y un nivel más bajo de LCR en pacientes con ERC que murieron en comparación con los recuperados. En un análisis de la curva de características operativas del receptor, el área NLR, SII, PLR y LCR bajo la curva de mortalidad hospitalaria de pacientes con ERC fueron de 0,830, 0,811, 0,664 y 0,712, respectivamente. Entre todos los parámetros, NLR y SII se dió a conocer la mejor manera de distinguir a los pacientes con mayor riesgo de muerte. Con base en el valor de corte de 1180,5, se encontró que la sensibilidad y especificidad del SII, para predecir la mortalidad hospitalaria, fue del 67,5% y 79,6%, respectivamente. La sensibilidad y especificidad correspondientes del NLR fueron del 85,2% y 66,1%, respectivamente, en el valor de corte de 5,1.
El análisis de regresión logística escalonada hacia adelante mostró que el NLR (≥5,1), SII (≥1180,5) y LCR (≤9) fueron predictores de mortalidad hospitalaria.
Conclusión: Informamos, por primera vez, que el SII es capaz de distinguir pacientes con ERC infectados por COVID-19 de peor supervivencia y, en este sentido, es tan poderoso como el NLR. Como el SII se cuantifica fácilmente a partir de los datos de las muestras de sangre, puede ayudar a la identificación temprana y el manejo oportuno de los pacientes con ERC con peor supervivencia.
Keywords: Chronic kidney disease; Enfermedad renal crónica; Infección por SARS-CoV-2; Mortalidad; Mortality; SARS-CoV-2 infection; Systemic immune inflammation index; Índice de inflamación inmunitaria sistémica.
Copyright © 2021 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.
Figures

Similar articles
-
Can systemic immune inflammation index at admission predict in-hospital mortality in chronic kidney disease patients with SARS-CoV-2 infection?Nefrologia. 2022 Sep-Oct;42(5):549-558. doi: 10.1016/j.nefro.2021.09.001. Epub 2021 Sep 15. Nefrologia. 2022. PMID: 34539001 Free PMC article.
-
[Investigation of the Relationship of Systemic Immune-Inflammation Index, C-Reactive Protein and Interleukin-6 with Viral Dynamics in Patients with COVID-19].Mikrobiyol Bul. 2021 Oct;55(4):539-552. doi: 10.5578/mb.20219706. Mikrobiyol Bul. 2021. PMID: 34666654 Turkish.
-
Study on the predictive value of laboratory inflammatory markers and blood count-derived inflammatory markers for disease severity and prognosis in COVID-19 patients: a study conducted at a university-affiliated infectious disease hospital.Ann Med. 2024 Dec;56(1):2415401. doi: 10.1080/07853890.2024.2415401. Epub 2024 Oct 24. Ann Med. 2024. PMID: 39444292 Free PMC article.
-
Clinical Significance and Diagnostic Utility of NLR, LMR, PLR and SII in the Course of COVID-19: A Literature Review.J Inflamm Res. 2023 Feb 11;16:539-562. doi: 10.2147/JIR.S395331. eCollection 2023. J Inflamm Res. 2023. PMID: 36818192 Free PMC article. Review.
-
Systemic inflammation index as useful tool to predict arteriovenous graft stenosis: Our experience and literature review.J Vasc Access. 2024 Mar;25(2):474-480. doi: 10.1177/11297298221119595. Epub 2022 Aug 22. J Vasc Access. 2024. PMID: 35996310 Review.
Cited by
-
High inflammatory indices are significant predictors of disease severity in maintenance hemodialysis patients with COVID-19: A cross-sectional study.Heliyon. 2024 Nov 8;10(22):e39980. doi: 10.1016/j.heliyon.2024.e39980. eCollection 2024 Nov 30. Heliyon. 2024. PMID: 39641073 Free PMC article.
-
Predictive modeling of COVID-19 mortality risk in chronic kidney disease patients using multiple machine learning algorithms.Sci Rep. 2024 Nov 6;14(1):26979. doi: 10.1038/s41598-024-78498-w. Sci Rep. 2024. PMID: 39506019 Free PMC article.
-
A Retrospective Analysis of the Importance of Biochemical and Hematological Parameters for Mortality Prediction in COVID-19 Cases.Cureus. 2022 Oct 10;14(10):e30129. doi: 10.7759/cureus.30129. eCollection 2022 Oct. Cureus. 2022. PMID: 36381891 Free PMC article.
-
Meta-analysis of the systemic immune-inflammatory index and in-hospital mortality of COVID-19 patients.Heliyon. 2023 Dec 8;10(1):e23441. doi: 10.1016/j.heliyon.2023.e23441. eCollection 2024 Jan 15. Heliyon. 2023. PMID: 38223728 Free PMC article.
-
Influence of Co-morbidities During SARS-CoV-2 Infection in an Indian Population.Front Med (Lausanne). 2022 Aug 1;9:962101. doi: 10.3389/fmed.2022.962101. eCollection 2022. Front Med (Lausanne). 2022. PMID: 35979209 Free PMC article.
References
-
- World Health Organization Coronavirus disease (COVID-2019). Situation reports, WHO COVID-19 Dashboard. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situatio... [accessed 19.5.21].
-
- Republic of Turkey ministry COVID 19 information page. Available from: https://covid19.saglik.gov.tr [accessed 19.5.21].
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous