Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 15;14(1):848.
doi: 10.1038/s41467-023-36031-z.

Long-lived electronic spin qubits in single-walled carbon nanotubes

Affiliations

Long-lived electronic spin qubits in single-walled carbon nanotubes

Jia-Shiang Chen et al. Nat Commun. .

Abstract

Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Confinement of electron spins with long coherence times in SWCNTs through chemical modification.
a Schematic of an electron spin (S = 1/2) confined in SWCNTs via chemical functionalization. B and ms are the applied magnetic field and spin quantum number, respectively. b Hahn echo decay curve of the confined electron spins in SWCNTs (dots) and a stretched exponential fit (curve). Inset: Echo-detected field-swept spectra of SWCNTs with various spin densities. Average spin densities (in the units of spins/nm) are labeled. c Coherence decay under various numbers of CPMG decoupling pulses as a function of total evaluation time. Black curves are stretched exponential fits to the data. d Scaling of the extracted T2 with the number n of CPMG pulses. The dashed line is a fit of the data to a power law: T2 ∝ n0.56.
Fig. 2
Fig. 2. Coherent manipulation of spin-qubits in SWCNTs.
a Rabi oscillations of spin qubits measured using different microwave powers. b Fourier transformation of the nutation curves. Note that the shoulder at 15 MHz obtained at high powers is due to Hartman–Hahn effect from precessing 1H nucleus. c Rabi frequencies obtained at various microwave powers versus the relative amplitudes of the applied microwave field. The line is a linear fit to the data.
Fig. 3
Fig. 3. Environmental nuclear spin baths of the localized electron spins in SWCNTs.
a A representative saturation recovery trace of NO2Ph-SWCNTs dispersed in toluene (dots) together with a biexponential fit (curve). b CP-ESEEM spectrum of NO2Ph-SWCNTs dispersed in toluene. c HYSCORE spectrum of NO2Ph-SWCNTs dispersed in toluene. d Zoomed in view of the area marked in (c). Ax,y,z represent the hyperfine tensors. e Simulated HYSCORE spectrum of NO2Ph-SWCNTs using the experimentally obtained hyperfine tensors. f HYSCORE spectrum of NO2Ph-SWCNTs dispersed in deuterated toluene measured at 5 K.
Fig. 4
Fig. 4. Decoherence sources and simulation of T2.
a, b Hahn echo decay curves (a) and saturation recovery traces (b) of NO2Ph-SWCNTs with various spin densities. The spin densities (spins/nm) are labeled next to the data. The dashed lines are stretched and biexponential fits. c Illustration of the decoherence mechanism in the SWCNT spin system. Inter-tube spin-spin interaction and hyperfine couplings to 13C and 1H are the main sources. d–g Simulated dynamics (dots) of a spin experiencing decoherence due to instantaneous diffusion (d) and hyperfine coupling to spin active nuclei including 1H, 2H, and 13C in the solvents (e) and 13C in the SWCNT bundles (f), as well as the simulated dynamics of an isolated spin in a single SWCNT without solvent or bundling (g) using the CCE method. The curves are stretched exponential fits.

Similar articles

Cited by

References

    1. Muhonen JT, et al. Storing quantum information for 30 seconds in a nanoelectronic device. Nat. Nanotechnol. 2014;9:986–991. doi: 10.1038/nnano.2014.211. - DOI - PubMed
    1. Saeedi K, et al. Room-temperature quantum bit storage exceeding 39 minutes using ionized donors in silicon-28. Science. 2013;342:830–833. doi: 10.1126/science.1239584. - DOI - PubMed
    1. Balasubramanian G, et al. Ultralong spin coherence time in isotopically engineered diamond. Nat. Mater. 2009;8:383–387. doi: 10.1038/nmat2420. - DOI - PubMed
    1. Bar-Gill N, Pham LM, Jarmola A, Budker D, Walsworth RL. Solid-state electronic spin coherence time approaching one second. Nat. Commun. 2013;4:1743. doi: 10.1038/ncomms2771. - DOI - PubMed
    1. Bulaev DenisV, Trauzettel B, Loss D. Spin-orbit interaction and anomalous spin relaxation in carbon nanotube quantum dots. Phys. Rev. B. 2008;77:235301. doi: 10.1103/PhysRevB.77.235301. - DOI