Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter
- PMID: 36792820
- PMCID: PMC10400746
- DOI: 10.1007/s11357-023-00735-3
Measurements of cerebral microvascular blood flow, oxygenation, and morphology in a mouse model of whole-brain irradiation-induced cognitive impairment by two-photon microscopy and optical coherence tomography: evidence for microvascular injury in the cerebral white matter
Abstract
Whole-brain irradiation (WBI, also known as whole-brain radiation therapy) is a mainstay treatment modality for patients with multiple brain metastases. It is also used as a prophylactic treatment for microscopic tumors that cannot be detected by magnetic resonance imaging. WBI induces a progressive cognitive decline in ~ 50% of the patients surviving over 6 months, significantly compromising the quality of life. There is increasing preclinical evidence that radiation-induced injury to the cerebral microvasculature and accelerated neurovascular senescence plays a central role in this side effect of WBI. To better understand this side effect, male C57BL/6 mice were first subjected to a clinically relevant protocol of fractionated WBI (5 Gy, two doses per week, for 4 weeks). Nine months post the WBI treatment, we applied two-photon microscopy and Doppler optical coherence tomography to measure capillary red-blood-cell (RBC) flux, capillary morphology, and microvascular oxygen partial pressure (PO2) in the cerebral somatosensory cortex in the awake, head-restrained, WPI-treated mice and their age-matched controls, through a cover-glass-sealed chronic cranial window. Thanks to the extended penetration depth with the fluorophore - Alexa680, measurements of capillary blood flow properties (e.g., RBC flux, speed, and linear density) in the cerebral subcortical white matter were enabled. We found that the WBI-treated mice exhibited a significantly decreased capillary RBC flux in the white matter. WBI also caused a significant reduction in capillary diameter, as well as a large (although insignificant) reduction in segment density at the deeper cortical layers (e.g., 600-700 μm), while the other morphological properties (e.g., segment length and tortuosity) were not obviously affected. In addition, we found that PO2 measured in the arterioles and venules, as well as the calculated oxygen saturation and oxygen extraction fraction, were not obviously affected by WBI. Lastly, WBI was associated with a significant increase in the erythrocyte-associated transients of PO2, while the changes of other cerebral capillary PO2 properties (e.g., capillary mean-PO2, RBC-PO2, and InterRBC-PO2) were not significant. Collectively, our findings support the notion that WBI results in persistent cerebral white matter microvascular impairment, which likely contributes to the WBI-induced brain injury and cognitive decline. Further studies are warranted to assess the WBI-induced changes in brain tissue oxygenation and malfunction of the white matter microvasculature as well.
Keywords: Microvascular blood flow; Optical microscopy; Vascular cognitive impairment; White matter; Whole-brain radiation.
© 2023. The Author(s), under exclusive licence to American Aging Association.
Conflict of interest statement
Dr. Anna Csiszar serves as Associate Editor for the
Figures








References
Publication types
MeSH terms
Substances
Grants and funding
- R00 MH120053/MH/NIMH NIH HHS/United States
- U19 NS123717/NS/NINDS NIH HHS/United States
- I01 BX005592/BX/BLRD VA/United States
- R01 NS115401/NS/NINDS NIH HHS/United States
- R01 AG068295/AG/NIA NIH HHS/United States
- K01 AG073614/AG/NIA NIH HHS/United States
- P20 GM125528/GM/NIGMS NIH HHS/United States
- R01 AG070915/AG/NIA NIH HHS/United States
- U01 HL133362/HL/NHLBI NIH HHS/United States
- R01 AG055395/AG/NIA NIH HHS/United States
- U24 EB028941/EB/NIBIB NIH HHS/United States
- RF1 NS121095/NS/NINDS NIH HHS/United States
- P20 GM103447/GM/NIGMS NIH HHS/United States
- T32 AG052363/AG/NIA NIH HHS/United States
- R01 NS091230/NS/NINDS NIH HHS/United States
- RF1 AG072295/AG/NIA NIH HHS/United States
- R01 CA255840/CA/NCI NIH HHS/United States
- R01 NS100782/NS/NINDS NIH HHS/United States
- P30 AG050911/AG/NIA NIH HHS/United States
LinkOut - more resources
Full Text Sources
Medical