Hyper crosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes
- PMID: 36798502
- PMCID: PMC9926895
- DOI: 10.1039/d2na00799a
Hyper crosslinked polymer supported NHC stabilized gold nanoparticles with excellent catalytic performance in flow processes
Abstract
Highly active and selective heterogeneous catalysis driven by metallic nanoparticles relies on a high degree of stabilization of such nanomaterials facilitated by strong surface ligands or deposition on solid supports. In order to tackle these challenges, N-heterocyclic carbene stabilized gold nanoparticles (NHC@AuNPs) emerged as promising heterogeneous catalysts. Despite the high degree of stabilization obtained by NHCs as surface ligands, NHC@AuNPs still need to be loaded on support structures to obtain easily recyclable and reliable heterogeneous catalysts. Therefore, the combination of properties obtained by NHCs and support structures as NHC bearing "functional supports" for the stabilization of AuNPs is desirable. Here, we report the synthesis of hyper-crosslinked polymers containing benzimidazolium as NHC precursors to stabilize AuNPs. Following the successful synthesis of hyper-crosslinked polymers (HCP), a two-step procedure was developed to obtain HCP·NHC@AuNPs. Detailed characterization not only revealed the successful NHC formation but also proved that the NHC functions as a stabilizer to the AuNPs in the porous polymer network. Finally, HCP·NHC@AuNPs were evaluated in the catalytic decomposition of 4-nitrophenol. In batch reactions, a conversion of greater than 99% could be achieved in as little as 90 s. To further evaluate the catalytic capability of HCP·NHC@AuNP, the catalytic decomposition of 4-nitrophenol was also performed in a flow setup. Here the catalyst not only showed excellent catalytic conversion but also exceptional recyclability while maintaining the catalytic performance.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures




Similar articles
-
Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform.Chem Sci. 2024 Sep 26;15(44):18524-33. doi: 10.1039/d4sc04112g. Online ahead of print. Chem Sci. 2024. PMID: 39430936 Free PMC article.
-
Bottom-up Synthesis of Water-Soluble Gold Nanoparticles Stabilized by N-Heterocyclic Carbenes: From Structural Characterization to Applications.Chemistry. 2022 Oct 7;28(56):e202201575. doi: 10.1002/chem.202201575. Epub 2022 Aug 10. Chemistry. 2022. PMID: 35801389 Free PMC article.
-
Perylene diimide-tagged N-heterocyclic carbene-stabilized gold nanoparticles: How much ligand desorbs from surface in presence of thiols?Dalton Trans. 2021 Apr 28;50(16):5598-5606. doi: 10.1039/d1dt00064k. Dalton Trans. 2021. PMID: 33908977
-
Catalytically Active Gold Nanomaterials Stabilized by N-heterocyclic Carbenes.Chem Asian J. 2021 Oct 18;16(20):3026-3037. doi: 10.1002/asia.202100731. Epub 2021 Sep 20. Chem Asian J. 2021. PMID: 34399027 Free PMC article. Review.
-
Ag-NHC Complexes in the π-Activation of Alkynes.Molecules. 2023 Jan 18;28(3):950. doi: 10.3390/molecules28030950. Molecules. 2023. PMID: 36770617 Free PMC article. Review.
Cited by
-
Fabrication of azido-PEG-NHC stabilized gold nanoparticles as a functionalizable platform.Chem Sci. 2024 Sep 26;15(44):18524-33. doi: 10.1039/d4sc04112g. Online ahead of print. Chem Sci. 2024. PMID: 39430936 Free PMC article.
-
Directed Synthesis of Gold Nanoparticle Superstructures Using Self-Assembling Peptoids Containing Metal-Bonding N-Heterocyclic Carbenes.Nano Lett. 2025 Aug 6;25(31):12049-12058. doi: 10.1021/acs.nanolett.5c02998. Epub 2025 Jul 11. Nano Lett. 2025. PMID: 40644600 Free PMC article.
References
-
- Smith C. A. Narouz M. R. Lummis P. A. Singh I. Nazemi A. Li C. H. Crudden C. M. Chem. Rev. 2019;119:4986–5056. doi: 10.1021/acs.chemrev.8b00514. - DOI - PubMed
- Zhukhovitskiy A. V. MacLeod M. J. Johnson J. A. Chem. Rev. 2015;115:11503–11532. doi: 10.1021/acs.chemrev.5b00220. - DOI - PubMed
- Koy M. Bellotti P. Das M. Glorius F. Nat. Catal. 2021;4:352–363. doi: 10.1038/s41929-021-00607-z. - DOI
- Eisen C. Chin J. M. Reithofer M. R. Chem.–Asian J. 2021;16:3026–3037. doi: 10.1002/asia.202100731. - DOI - PMC - PubMed
-
- Crudden C. M. Horton J. H. Ebralidze I. I. Zenkina O. V. McLean A. B. Drevniok B. She Z. Kraatz H. B. Mosey N. J. Seki T. Keske E. C. Leake J. D. Rousina-Webb A. Wu G. Nat. Chem. 2014;6:409–414. doi: 10.1038/nchem.1891. - DOI - PubMed
- Vignolle J. Tilley T. D. Chem. Commun. 2009:7230–7232. doi: 10.1039/B913884F. - DOI - PubMed
- Hurst E. C. Wilson K. Fairlamb I. J. S. Chechik V. New J. Chem. 2009;33:1837–1840. doi: 10.1039/B905559B. - DOI
- Zhukhovitskiy A. V. Mavros M. G. Van Voorhis T. Johnson J. A. J. Am. Chem. Soc. 2013;135:7418–7421. doi: 10.1021/ja401965d. - DOI - PubMed
-
- Man R. W. Y. Li C. H. MacLean M. W. A. Zenkina O. V. Zamora M. T. Saunders L. N. Rousina-Webb A. Nambo M. Crudden C. M. J. Am. Chem. Soc. 2018;140:1576–1579. doi: 10.1021/jacs.7b08516. - DOI - PubMed
- Zhang L. Wei Z. Thanneeru S. Meng M. Kruzyk M. Ung G. Liu B. He J. Angew. Chem., Int. Ed. 2019;58:15834–15840. doi: 10.1002/anie.201909069. - DOI - PubMed
- MacLeod M. J. Johnson J. A. J. Am. Chem. Soc. 2015;137:7974–7977. doi: 10.1021/jacs.5b02452. - DOI - PubMed
- Young A. J. Serpell C. J. Chin J. M. Reithofer M. R. Chem. Commun. 2017;53:12426–12429. doi: 10.1039/C7CC07602A. - DOI - PubMed
-
- Burda C. Chen X. Narayanan R. El-Sayed M. A. Chem. Rev. 2005;105:1025–1102. doi: 10.1021/cr030063a. - DOI - PubMed
- Astruc D. Lu F. Aranzaes J. R. Angew. Chem., Int. Ed. 2005;44:7852–7872. doi: 10.1002/anie.200500766. - DOI - PubMed
- Daniel M. C. Astruc D. Chem. Rev. 2004;104:293–346. doi: 10.1021/cr030698+. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous