Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Feb 18;25(1):27.
doi: 10.1186/s13075-023-03006-w.

Osteoarthritis: a narrative review of molecular approaches to disease management

Affiliations
Review

Osteoarthritis: a narrative review of molecular approaches to disease management

Loay A Salman et al. Arthritis Res Ther. .

Abstract

Osteoarthritis (OA) is a chronic, progressive degenerative whole joint disease that affects the articular cartilage, subchondral bone, ligaments, capsule, and synovium. While it is still believed to be a mechanically driven disease, the role of underlying co-existing inflammatory processes and mediators in the onset of OA and its progression is now more appreciated. Post-traumatic osteoarthritis (PTOA) is a subtype of OA that occurs secondary to traumatic joint insults and is widely used in pre-clinical models to help understand OA in general. There is an urgent need to develop new treatments as the global burden is considerable and expanding. In this review, we focus on the recent pharmacological advances in the treatment of OA and summarize the most significant promising agents based on their molecular effects. Those are classified here into broad categories: anti-inflammatory, modulation of the activity of matrix metalloproteases, anabolic, and unconventional pleiotropic agents. We provide a comprehensive analysis of the pharmacological advances in each of these areas and highlight future insights and directions in the OA field.

Keywords: Animal models; Biomechanics; Osteoarthritis; Pharmacological; Posttraumatic; Treatment.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
PTOA pathogenesis. Risk factors aggravating the process. Potential therapeutic targeting points are pointed out with red X
Fig. 2
Fig. 2
Effect of mechanical injury on mitochondria-associated pathways. Effects on MT dysfunction, oxidative response, and caspase activation leading to cell death, ECM degradation, and apoptosis and subsequently PTOA. Potential inhibitory roles of certain pharmacological interventions are depicted. Adapted from Delco et al. [15]. MT, mitochondria; ROS, reactive oxygen species; ECM, extracellular matrix

References

    1. Loeser RF, et al. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012;64(6):1697–1707. doi: 10.1002/art.34453. - DOI - PMC - PubMed
    1. Mazur CM, Bailey KN, Alliston T. Joint cross-talk among bone, synovium, and articular cartilage. In: Aaron R, editor. Orthopaedic basic science: foundations of clincal practice: Wolters Kluwer, American Academy of Orthopaedic Surgeons (AAOS). 2021.
    1. Thomas AC, et al. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491–496. doi: 10.4085/1062-6050-51.5.08. - DOI - PMC - PubMed
    1. Little CB, Hunter DJ. Post-traumatic osteoarthritis: from mouse models to clinical trials. Nat Rev Rheumatol. 2013;9(8):485–497. doi: 10.1038/nrrheum.2013.72. - DOI - PubMed
    1. Muthuri SG, et al. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage. 2011;19(11):1286–1293. doi: 10.1016/j.joca.2011.07.015. - DOI - PubMed

Publication types