A HD-ZIP transcription factor specifies fates of multicellular trichomes via dosage-dependent mechanisms in tomato
- PMID: 36801006
- DOI: 10.1016/j.devcel.2023.01.009
A HD-ZIP transcription factor specifies fates of multicellular trichomes via dosage-dependent mechanisms in tomato
Abstract
Hair-like structures are shared by most living organisms. The hairs on plant surfaces, commonly referred to as trichomes, form diverse types to sense and protect against various stresses. However, it is unclear how trichomes differentiate into highly variable forms. Here, we show that a homeodomain leucine zipper (HD-ZIP) transcription factor named Woolly controls the fates of distinct trichomes in tomato via a dosage-dependent mechanism. The autocatalytic reinforcement of Woolly is counteracted by an autoregulatory negative feedback loop, creating a circuit with a high or low Woolly level. This biases the transcriptional activation of separate antagonistic cascades that lead to different trichome types. Our results identify the developmental switch of trichome formation and provide mechanistic insights into the progressive fate specification in plants, as well as a path to enhancing plant stress resistance and the production of beneficial chemicals.
Keywords: HD-ZIP transcription factor; LEAFLESS; MTR1; cell fate determination; cell lineage; digitate trichome; dosage-dependent regulation; glandular trichome; peltate trichome; woolly.
Copyright © 2023 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of interests A Chinese patent (202111506682.x) and a PCT (PCT/CN2022/090120) based on the results in this manuscript have been filed.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
