Developments in describing equilibrium phase transitions of multivalent associative macromolecules
- PMID: 36804705
- PMCID: PMC10732938
- DOI: 10.1016/j.sbi.2023.102540
Developments in describing equilibrium phase transitions of multivalent associative macromolecules
Abstract
Biomolecular condensates are distinct cellular bodies that form and dissolve reversibly to organize cellular matter and biochemical reactions in space and time. Condensates are thought to form and dissolve under the influence of spontaneous and driven phase transitions of multivalent associative macromolecules. These include phase separation, which is defined by segregation of macromolecules from the solvent or from one another, and percolation or gelation, which is an inclusive networking transition driven by reversible associations among multivalent macromolecules. Considerable progress has been made to model sequence-specific phase transitions, especially for intrinsically disordered proteins. Here, we summarize the state-of-the-art of theories and computations aimed at understanding and modeling sequence-specific, thermodynamically controlled, coupled associative and segregative phase transitions of archetypal multivalent macromolecules.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Conflict of interest statement Nothing declared.
Figures



Similar articles
-
Condensates formed by prion-like low-complexity domains have small-world network structures and interfaces defined by expanded conformations.Nat Commun. 2022 Dec 13;13(1):7722. doi: 10.1038/s41467-022-35370-7. Nat Commun. 2022. PMID: 36513655 Free PMC article.
-
Phase Transitions of Associative Biomacromolecules.Chem Rev. 2023 Jul 26;123(14):8945-8987. doi: 10.1021/acs.chemrev.2c00814. Epub 2023 Mar 7. Chem Rev. 2023. PMID: 36881934 Free PMC article. Review.
-
Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7889-7898. doi: 10.1073/pnas.1821038116. Epub 2019 Mar 29. Proc Natl Acad Sci U S A. 2019. PMID: 30926670 Free PMC article.
-
Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.Elife. 2017 Nov 1;6:e30294. doi: 10.7554/eLife.30294. Elife. 2017. PMID: 29091028 Free PMC article.
-
Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates.Biochemistry. 2018 May 1;57(17):2499-2508. doi: 10.1021/acs.biochem.8b00058. Epub 2018 Mar 13. Biochemistry. 2018. PMID: 29509422 Review.
Cited by
-
FIREBALL: A tool to fit protein phase diagrams based on mean-field theories for polymer solutions.Biophys J. 2023 Jun 20;122(12):2396-2403. doi: 10.1016/j.bpj.2023.05.007. Epub 2023 May 8. Biophys J. 2023. PMID: 37161095 Free PMC article.
-
Predicting Heteropolymer Phase Separation Using Two-Chain Contact Maps.ArXiv [Preprint]. 2025 May 20:arXiv:2503.04659v2. ArXiv. 2025. Update in: J Chem Phys. 2025 Jul 07;163(1):014102. doi: 10.1063/5.0269504. PMID: 40093361 Free PMC article. Updated. Preprint.
-
Current perspectives in drug targeting intrinsically disordered proteins and biomolecular condensates.BMC Biol. 2025 May 6;23(1):118. doi: 10.1186/s12915-025-02214-x. BMC Biol. 2025. PMID: 40325419 Free PMC article. Review.
-
Toward Accurate Simulation of Coupling between Protein Secondary Structure and Phase Separation.J Am Chem Soc. 2024 Jan 10;146(1):342-357. doi: 10.1021/jacs.3c09195. Epub 2023 Dec 19. J Am Chem Soc. 2024. PMID: 38112495 Free PMC article.
-
Phase separation of protein mixtures is driven by the interplay of homotypic and heterotypic interactions.Nat Commun. 2023 Sep 8;14(1):5527. doi: 10.1038/s41467-023-41274-x. Nat Commun. 2023. PMID: 37684240 Free PMC article.
References
-
- Alberti S, Hyman AA: Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nature Reviews Molecular Cell Biology 2021, 22:196–213. - PubMed
-
- Shin Y, Brangwynne CP: Liquid phase condensation in cell physiology and disease. Science 2017, 357:eaaf4382. - PubMed
-
- Fritsch AW, Diaz-Delgadillo AF, Adame-Arana O, Hoege C, Mittasch M, Kreysing M, Leaver M, Hyman AA, Jülicher F, Weber CA: Local thermodynamics govern formation and dissolution of Caenorhabditis elegans P granule condensates. Proceedings of the National Academy of Sciences USA 2021, 118:e2102772118. - PMC - PubMed
-
- Hyman AA, Weber CA, Jülicher F: Liquid-liquid phase separation in biology. Annu. Rev. Cell Dev. Biol. 2014, 30:39–58. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources