Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis
- PMID: 36809854
- PMCID: PMC10000628
- DOI: 10.1021/jacs.2c11786
Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis
Abstract
The mild catalytic partial reduction of amides to imines has proven to be a challenging synthetic transformation, with many transition metals directly reducing these substrates to amines. Herein, we report a mild, catalytic method for the semireduction of both secondary and tertiary amides via zirconocene hydride catalysis. Utilizing just 5 mol % of Cp2ZrCl2, the reductive deoxygenation of secondary amides is demonstrated to furnish a diverse array of imines in up to 94% yield with excellent chemoselectivity and without the need for glovebox handling. Moreover, a novel reductive transamination of tertiary amides is also achievable when the catalytic protocol is carried out in the presence of a primary amine at room temperature, providing access to an expanded assortment of imines in up to 98% yield. Through slight procedural tuning, the single-flask conversion of amides to imines, aldehydes, amines or enamines is feasible, including multicomponent syntheses.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



References
-
- McGrath N. A.; Brichacek M.; Njardarson J. T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 2010, 87, 1348–1349. 10.1021/ed1003806. - DOI
- Njardarson J. T.Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2021; 2021. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/file... (accessed 08/10/22).
-
- Greenberg A.; Breneman C. M.; Liebman J. F.. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; John Wiley & Sons, 2000.
- Pace V.; Holzer W.; Olofsson B. Increasing the Reactivity of Amides Towards Organometallic Reagents: An Overview. Adv. Synth. Catal. 2014, 356, 3697–3736. 10.1002/adsc.201400630. - DOI
- Kaiser D.; Bauer A.; Lemmerer M.; Maulide N. Amide Activation: An Emerging Tool for Chemoselective Synthesis. Chem. Soc. Rev. 2018, 47, 7899–7925. 10.1039/C8CS00335A. - DOI - PubMed
- Mahesh S.; Tang K. C.; Raj M. Amide Bond Activation of Biological Molecules. Molecules 2018, 23, 2615.10.3390/molecules23102615. - DOI - PMC - PubMed
- Li G.; Ma S.; Szostak M. Amide Bond Activation: The Power of Resonance. Trends in Chemistry 2020, 2, 914–928. 10.1016/j.trechm.2020.08.001. - DOI
-
- Arnott G. E.Reduction of Carboxylic Acids and Their Derivatives to Aldehydes. In Comprehensive Organic Synthesis, 2nd ed.; Knochel P., Ed.; Elsevier, 2014; Vol 8, Chapter 11, pp 410–445.
- Volkov A.; Tinnis F.; Slagbrand T.; Trillo P.; Adolfsson H. Chemoselective Reduction of Carboxamides. Chem. Soc. Rev. 2016, 45, 6685–6697. 10.1039/C6CS00244G. - DOI - PubMed
- Prince R. J.; Gao F.; Pazienza J. E.; Marx I. E.; Schulz J.; Hopkins B. T. Utilization of Cyclic Amides as Masked Aldehyde Equivalents in Reductive Amination Reactions. J. Org. Chem. 2019, 84, 7936–7949. 10.1021/acs.joc.9b00816. - DOI - PubMed
- Czerwiński P. J.; Furman B. Reductive Functionalization of Amides in Synthesis and for Modification of Bioactive Compounds. Front Chem. 2021, 9, 655849.10.3389/fchem.2021.655849. - DOI - PMC - PubMed
- Yang Z. Partial Reductions of Carboxylic Acids and Their Derivatives to Aldehydes. Org. Chem. Front. 2022, 9, 3908–3931. 10.1039/D2QO00748G. - DOI
-
- Kuwano R.; Takahashi M.; Ito Y. Reduction of Amides to Amines Via Catalytic Hydrosilylation by a Rhodium Complex. Tetrahedron Lett. 1998, 39, 1017–1020. 10.1016/S0040-4039(97)10804-8. - DOI
- Hanada S.; Tsutsumi E.; Motoyama Y.; Nagashima H. Practical Access to Amines by Platinum-Catalyzed Reduction of Carboxamides with Hydrosilanes: Synergy of Dual Si–H Groups Leads to High Efficiency and Selectivity. J. Am. Chem. Soc. 2009, 131, 15032–15040. 10.1021/ja9055307. - DOI - PubMed
- Zhou S.; Junge K.; Addis D.; Das S.; Beller M. A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angew. Chem., Int. Ed. 2009, 48, 9507–9510. 10.1002/anie.200904677. - DOI - PubMed
- Das S.; Addis D.; Zhou S.; Junge K.; Beller M. Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc. 2010, 132, 1770–1771. 10.1021/ja910083q. - DOI - PubMed
- Das S.; Addis D.; Junge K.; Beller M. Zinc-Catalyzed Chemoselective Reduction of Tertiary and Secondary Amides to Amines. Chem.—Eur. J. 2011, 17, 12186–12192. 10.1002/chem.201101143. - DOI - PubMed
- Das S. A General and Selective Copper-Catalyzed Reduction of Secondary Amides. Chem. Commun., 2012, 48, 2683.10.1039/c2cc17209g. - DOI - PubMed
- Das S.; Wendt B.; Möller K.; Junge K.; Beller M. Two Iron Catalysts Are Better Than One: A General and Convenient Reduction of Aromatic and Aliphatic Primary Amides. Angew. Chem., Int. Ed. 2012, 51, 1662–1666. 10.1002/anie.201108155. - DOI - PubMed
- Dombray T.; Helleu C.; Darcel C.; Sortais J.-B. Cobalt Carbonyl-Based Catalyst for Hydrosilylation of Carboxamides. Adv. Synth. Catal. 2013, 355, 3358–3362. 10.1002/adsc.201300664. - DOI
- Reeves J. T.; Tan Z.; Marsini M. A.; Han Z. S.; Xu Y.; Reeves D. C.; Lee H.; Lu B. Z.; Senanayake C. H. A Practical Procedure for Reduction of Primary, Secondary and Tertiary Amides to Amines. Adv. Synth. Catal. 2013, 355, 47–52. 10.1002/adsc.201200835. - DOI
- Pisiewicz S.; Junge K.; Beller M. Mild Hydrosilylation of Amides by Platinum N-Heterocyclic Carbene Catalysts. Eur. J. Inorg. Chem. 2014, 2014, 2345–2349. 10.1002/ejic.201402083. - DOI
- Volkov A.; Tinnis F.; Slagbrand T.; Pershagen I.; Adolfsson H. Mo(Co)6 Catalysed Chemoselective Hydrosilylation of A,B-Unsaturated Amides for the Formation of Allylamines. Chem. Commun. 2014, 50, 14508–14511. 10.1039/C4CC07150F. - DOI - PubMed
- Khalimon A. Y.; Gudun K. A.; Hayrapetyan D. Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines. Catalysts 2019, 9, 490.10.3390/catal9060490. - DOI
- Nurseiit A.; Janabel J.; Gudun K. A.; Kassymbek A.; Segizbayev M.; Seilkhanov T. M.; Khalimon A. Y. Bench-Stable Cobalt Pre-Catalysts for Mild Hydrosilative Reduction of Tertiary Amides to Amines and Beyond. ChemCatChem. 2019, 11, 790–798. 10.1002/cctc.201801605. - DOI
- Pandey P.; Bera J. K. Hydrosilylative Reduction of Primary Amides to Primary Amines Catalyzed by a Terminal [Ni–Oh] Complex. Chem. Commun. 2021, 57, 9204–9207. 10.1039/D1CC03537A. - DOI - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous