Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 8;145(9):4921-4927.
doi: 10.1021/jacs.2c11786. Epub 2023 Feb 21.

Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis

Affiliations

Mild Divergent Semireductive Transformations of Secondary and Tertiary Amides via Zirconocene Hydride Catalysis

Rebecca A Kehner et al. J Am Chem Soc. .

Abstract

The mild catalytic partial reduction of amides to imines has proven to be a challenging synthetic transformation, with many transition metals directly reducing these substrates to amines. Herein, we report a mild, catalytic method for the semireduction of both secondary and tertiary amides via zirconocene hydride catalysis. Utilizing just 5 mol % of Cp2ZrCl2, the reductive deoxygenation of secondary amides is demonstrated to furnish a diverse array of imines in up to 94% yield with excellent chemoselectivity and without the need for glovebox handling. Moreover, a novel reductive transamination of tertiary amides is also achievable when the catalytic protocol is carried out in the presence of a primary amine at room temperature, providing access to an expanded assortment of imines in up to 98% yield. Through slight procedural tuning, the single-flask conversion of amides to imines, aldehydes, amines or enamines is feasible, including multicomponent syntheses.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Synthetic potential of amides through semireduction.
Figure 2
Figure 2
Initial inspiration and proposed catalytic manifold.
Scheme 1
Scheme 1. Synthetic Utility of the ZrH-Catalyzed Diversification of Amides
All reactions were carried out under an atmosphere of N2 using Cp2ZrCl2 (5 mol %), HNEt2 (5 mol %), and DMMS (4.0 equiv). Conditions a:2g (0.5 mmol), PhMe (0.5 M), 30 °C, 24 h. Conditions b:2g (0.5 mmol), PhMe (0.5 M), 30 °C, 24 h, followed by aqueous acidic workup. Conditions c:2g (0.5 mmol), PhMe (0.5 M), 30 °C, 19 h, then THF (2.0 mL), allylmagnesium bromide (4.0 equiv), 0 °C – 23 °C, 6 h. Conditions d:6a (0.5 mmol), allylamine (1.05 equiv), THF (0.2 M), 23 °C, 21 h, then allylmagnesium bromide (4.0 equiv), 0 °C – 23 °C, 5 h. Conditions e:6a (0.5 mmol), p-anisidine (1.05 equiv), THF (0.2 M), 23 °C, 19 h, then benzylmagnesium chloride (4.0 equiv), 0 °C – 23 °C, 6 h. Conditions f:6i (0.5 mmol), diethylamine (2.0 equiv), THF (0.5 M), 60 °C, 18 h. Conditions g:6j (0.3 mmol), piperidine (2.0 equiv), THF (0.5 M), 60 °C, 19 h. Yield was determined by 1H NMR spectroscopy of the crude reaction mixture, using mesitylene as an internal standard.

References

    1. McGrath N. A.; Brichacek M.; Njardarson J. T. A Graphical Journey of Innovative Organic Architectures That Have Improved Our Lives. J. Chem. Educ. 2010, 87, 1348–1349. 10.1021/ed1003806. - DOI
    2. Njardarson J. T.Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2021; 2021. https://njardarson.lab.arizona.edu/sites/njardarson.lab.arizona.edu/file... (accessed 08/10/22).
    1. Greenberg A.; Breneman C. M.; Liebman J. F.. The Amide Linkage: Structural Significance in Chemistry, Biochemistry, and Materials Science; John Wiley & Sons, 2000.
    2. Pace V.; Holzer W.; Olofsson B. Increasing the Reactivity of Amides Towards Organometallic Reagents: An Overview. Adv. Synth. Catal. 2014, 356, 3697–3736. 10.1002/adsc.201400630. - DOI
    3. Kaiser D.; Bauer A.; Lemmerer M.; Maulide N. Amide Activation: An Emerging Tool for Chemoselective Synthesis. Chem. Soc. Rev. 2018, 47, 7899–7925. 10.1039/C8CS00335A. - DOI - PubMed
    4. Mahesh S.; Tang K. C.; Raj M. Amide Bond Activation of Biological Molecules. Molecules 2018, 23, 2615.10.3390/molecules23102615. - DOI - PMC - PubMed
    5. Li G.; Ma S.; Szostak M. Amide Bond Activation: The Power of Resonance. Trends in Chemistry 2020, 2, 914–928. 10.1016/j.trechm.2020.08.001. - DOI
    1. Burns N. Z.; Baran P. S.; Hoffmann R. W. Redox Economy in Organic Synthesis. Angew. Chem., Int. Ed. 2009, 48, 2854–2867. 10.1002/anie.200806086. - DOI - PubMed
    1. Arnott G. E.Reduction of Carboxylic Acids and Their Derivatives to Aldehydes. In Comprehensive Organic Synthesis, 2nd ed.; Knochel P., Ed.; Elsevier, 2014; Vol 8, Chapter 11, pp 410–445.
    2. Volkov A.; Tinnis F.; Slagbrand T.; Trillo P.; Adolfsson H. Chemoselective Reduction of Carboxamides. Chem. Soc. Rev. 2016, 45, 6685–6697. 10.1039/C6CS00244G. - DOI - PubMed
    3. Prince R. J.; Gao F.; Pazienza J. E.; Marx I. E.; Schulz J.; Hopkins B. T. Utilization of Cyclic Amides as Masked Aldehyde Equivalents in Reductive Amination Reactions. J. Org. Chem. 2019, 84, 7936–7949. 10.1021/acs.joc.9b00816. - DOI - PubMed
    4. Czerwiński P. J.; Furman B. Reductive Functionalization of Amides in Synthesis and for Modification of Bioactive Compounds. Front Chem. 2021, 9, 655849.10.3389/fchem.2021.655849. - DOI - PMC - PubMed
    5. Yang Z. Partial Reductions of Carboxylic Acids and Their Derivatives to Aldehydes. Org. Chem. Front. 2022, 9, 3908–3931. 10.1039/D2QO00748G. - DOI
    1. Kuwano R.; Takahashi M.; Ito Y. Reduction of Amides to Amines Via Catalytic Hydrosilylation by a Rhodium Complex. Tetrahedron Lett. 1998, 39, 1017–1020. 10.1016/S0040-4039(97)10804-8. - DOI
    2. Hanada S.; Tsutsumi E.; Motoyama Y.; Nagashima H. Practical Access to Amines by Platinum-Catalyzed Reduction of Carboxamides with Hydrosilanes: Synergy of Dual Si–H Groups Leads to High Efficiency and Selectivity. J. Am. Chem. Soc. 2009, 131, 15032–15040. 10.1021/ja9055307. - DOI - PubMed
    3. Zhou S.; Junge K.; Addis D.; Das S.; Beller M. A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angew. Chem., Int. Ed. 2009, 48, 9507–9510. 10.1002/anie.200904677. - DOI - PubMed
    4. Das S.; Addis D.; Zhou S.; Junge K.; Beller M. Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance. J. Am. Chem. Soc. 2010, 132, 1770–1771. 10.1021/ja910083q. - DOI - PubMed
    5. Das S.; Addis D.; Junge K.; Beller M. Zinc-Catalyzed Chemoselective Reduction of Tertiary and Secondary Amides to Amines. Chem.—Eur. J. 2011, 17, 12186–12192. 10.1002/chem.201101143. - DOI - PubMed
    6. Das S. A General and Selective Copper-Catalyzed Reduction of Secondary Amides. Chem. Commun., 2012, 48, 2683.10.1039/c2cc17209g. - DOI - PubMed
    7. Das S.; Wendt B.; Möller K.; Junge K.; Beller M. Two Iron Catalysts Are Better Than One: A General and Convenient Reduction of Aromatic and Aliphatic Primary Amides. Angew. Chem., Int. Ed. 2012, 51, 1662–1666. 10.1002/anie.201108155. - DOI - PubMed
    8. Dombray T.; Helleu C.; Darcel C.; Sortais J.-B. Cobalt Carbonyl-Based Catalyst for Hydrosilylation of Carboxamides. Adv. Synth. Catal. 2013, 355, 3358–3362. 10.1002/adsc.201300664. - DOI
    9. Reeves J. T.; Tan Z.; Marsini M. A.; Han Z. S.; Xu Y.; Reeves D. C.; Lee H.; Lu B. Z.; Senanayake C. H. A Practical Procedure for Reduction of Primary, Secondary and Tertiary Amides to Amines. Adv. Synth. Catal. 2013, 355, 47–52. 10.1002/adsc.201200835. - DOI
    10. Pisiewicz S.; Junge K.; Beller M. Mild Hydrosilylation of Amides by Platinum N-Heterocyclic Carbene Catalysts. Eur. J. Inorg. Chem. 2014, 2014, 2345–2349. 10.1002/ejic.201402083. - DOI
    11. Volkov A.; Tinnis F.; Slagbrand T.; Pershagen I.; Adolfsson H. Mo(Co)6 Catalysed Chemoselective Hydrosilylation of A,B-Unsaturated Amides for the Formation of Allylamines. Chem. Commun. 2014, 50, 14508–14511. 10.1039/C4CC07150F. - DOI - PubMed
    12. Khalimon A. Y.; Gudun K. A.; Hayrapetyan D. Base Metal Catalysts for Deoxygenative Reduction of Amides to Amines. Catalysts 2019, 9, 490.10.3390/catal9060490. - DOI
    13. Nurseiit A.; Janabel J.; Gudun K. A.; Kassymbek A.; Segizbayev M.; Seilkhanov T. M.; Khalimon A. Y. Bench-Stable Cobalt Pre-Catalysts for Mild Hydrosilative Reduction of Tertiary Amides to Amines and Beyond. ChemCatChem. 2019, 11, 790–798. 10.1002/cctc.201801605. - DOI
    14. Pandey P.; Bera J. K. Hydrosilylative Reduction of Primary Amides to Primary Amines Catalyzed by a Terminal [Ni–Oh] Complex. Chem. Commun. 2021, 57, 9204–9207. 10.1039/D1CC03537A. - DOI - PubMed

LinkOut - more resources