Identifying and analyzing sepsis states: A retrospective study on patients with sepsis in ICUs
- PMID: 36812596
- PMCID: PMC9931346
- DOI: 10.1371/journal.pdig.0000130
Identifying and analyzing sepsis states: A retrospective study on patients with sepsis in ICUs
Abstract
Sepsis accounts for more than 50% of hospital deaths, and the associated cost ranks the highest among hospital admissions in the US. Improved understanding of disease states, progression, severity, and clinical markers has the potential to significantly improve patient outcomes and reduce cost. We develop a computational framework that identifies disease states in sepsis and models disease progression using clinical variables and samples in the MIMIC-III database. We identify six distinct patient states in sepsis, each associated with different manifestations of organ dysfunction. We find that patients in different sepsis states are statistically significantly composed of distinct populations with disparate demographic and comorbidity profiles. Our progression model accurately characterizes the severity level of each pathological trajectory and identifies significant changes in clinical variables and treatment actions during sepsis state transitions. Collectively, our framework provides a holistic view of sepsis, and our findings provide the basis for future development of clinical trials, prevention, and therapeutic strategies for sepsis.
Copyright: © 2022 Fang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures
References
LinkOut - more resources
Full Text Sources