Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr:103:107833.
doi: 10.1016/j.compbiolchem.2023.107833. Epub 2023 Feb 17.

BRWMC: Predicting lncRNA-disease associations based on bi-random walk and matrix completion on disease and lncRNA networks

Affiliations

BRWMC: Predicting lncRNA-disease associations based on bi-random walk and matrix completion on disease and lncRNA networks

Guo-Zheng Zhang et al. Comput Biol Chem. 2023 Apr.

Abstract

Many experiments have proved that long non-coding RNAs (lncRNAs) in humans have been implicated in disease development. The prediction of lncRNA-disease association is essential in promoting disease treatment and drug development. It is time-consuming and laborious to explore the relationship between lncRNA and diseases in the laboratory. The computation-based approach has clear advantages and has become a promising research direction. This paper proposes a new lncRNA disease association prediction algorithm BRWMC. Firstly, BRWMC constructed several lncRNA (disease) similarity networks based on different measurement angles and fused them into an integrated similarity network by similarity network fusion (SNF). In addition, the random walk method is used to preprocess the known lncRNA-disease association matrix and calculate the estimated scores of potential lncRNA-disease associations. Finally, the matrix completion method accurately predicts the potential lncRNA-disease associations. Under the framework of leave-one-out cross-validation and 5-fold cross-validation, the AUC values obtained by BRWMC are 0.9610 and 0.9739, respectively. In addition, case studies of three common diseases show that BRWMC is a reliable method for prediction.

Keywords: LncRNA-disease association prediction; Matrix completion; Random walk; Similarity network fusion.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Substances

LinkOut - more resources