Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 22;23(1):106.
doi: 10.1186/s12879-023-08058-6.

Epidemiology and source of infection in cancer patients with febrile neutropenia: an experience from a developing country

Affiliations

Epidemiology and source of infection in cancer patients with febrile neutropenia: an experience from a developing country

Nagham Joudeh et al. BMC Infect Dis. .

Abstract

Background: Febrile neutropenia (FN) is a life-threatening complication that predisposes cancer patients to serious infections. This study aims to describe the epidemiology and source of infection in cancer patients with FN in a tertiary care hospital.

Methods: A hospital-based retrospective study was conducted in a large tertiary care hospital from January 2020 to December 2021. Data on cancer patients with FN were collected from the hospital information system.

Results: 150 cancer patients with FN were identified during the study period. Most patients were males (98; 65.3%), and the mean age of participants was 42.2 ± 16.0 years. Most patients (127; 84.7%) had hematologic malignancies, and acute myeloid leukemia was the most common diagnosis (42; 28%), followed by acute lymphocytic leukemia (28; 18.7%) and Hodgkin's lymphoma (20; 13.3%). Fifty-four (36%) patients had a median Multinational Association for Supportive Care in Cancer (MASCC) scores greater than 21. Regarding the outcome, nine (6%) died, and 141(94%) were discharged. The focus of fever was unknown in most patients (108; 72%). Among the known origins of fever were colitis (12; 8%), pneumonia (8; 5.3%), cellulitis (6; 4%), bloodstream infections (7; 4.6%), perianal abscess (2; 1.3%) and others. The median duration of fever was two days, and the median duration of neutropenia was seven days. Sixty-three (42%) patients had infections: 56 (73.3%) were bacterial, four (2.6%) were viral, two (1%) were fungal and 1 (0.7%) was parasitic. Among the bacterial causes, 50 cases (89.2%) were culture-positive. Among the culture-positive cases, 34 (68%) were gram-positive and 22 (44%) were gram-negative. The most frequent gram-positive bacteria were E. faecalis (9; 18% of culture-positive cases), and the most frequent gram-negative organisms were Klebsiella pneumoniae (5; 10%). Levofloxacin was the most commonly used prophylactic antibiotic (23; 15.33%), followed by acyclovir (1610.7%) and fluconazole in 15 patients (10%). Amikacin was the most popular empiric therapy, followed by piperacillin/tazobactam (74; 49.3%), ceftazidime (70; 46.7%), and vancomycin (63; 42%). One-third of E. faecalis isolates were resistant to ampicillin. Approximately two-thirds of Klebsiella pneumoniae isolates were resistant to piperacillin/tazobactam and ceftazidime. Amikacin resistance was proven in 20% of isolates.

Conclusions: The majority of patients suffered from hematologic malignancies. Less than half of the patients had infections, and the majority were bacterial. Gram-positive bacteria comprised two-thirds of cases. Therefore, empiric therapy was appropriate and in accordance with the antibiogram of the isolated bacteria.

Keywords: Antimicrobial resistance; Cancer patients; Febrile neutropenia.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Similar articles

Cited by

References

    1. Zaimy MA, Saffarzadeh N, Mohammadi A, Pourghadamyari H, Izadi P, Sarli A, Moghaddam LK, Paschepari SR, Azizi H, Torkamandi S, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles. Cancer Gene Ther. 2017;24(6):233–243. doi: 10.1038/cgt.2017.16. - DOI - PubMed
    1. Hausman DM. What is cancer? Perspect Biol Med. 2019;62(4):778–784. doi: 10.1353/pbm.2019.0046. - DOI - PubMed
    1. Zhou S, Gravekamp C, Bermudes D, Liu K. Tumour-targeting bacteria engineered to fight cancer. Nat Rev Cancer. 2018;18(12):727–743. doi: 10.1038/s41568-018-0070-z. - DOI - PMC - PubMed
    1. Debela DT, Muzazu SG, Heraro KD, Ndalama MT, Mesele BW, Haile DC, Kitui SK, Manyazewal T. New approaches and procedures for cancer treatment: current perspectives. SAGE Open Med. 2021;9:20503121211034366. doi: 10.1177/20503121211034366. - DOI - PMC - PubMed
    1. Furue H. Chemotherapy cancer treatment during the past sixty years. Gan To Kagaku Ryoho. 2003;30(10):1404–1411. - PubMed