Impact of trisomy 19 on outcome according to genetic makeup in patients with acute myeloid leukemia
- PMID: 36815361
- PMCID: PMC10388269
- DOI: 10.3324/haematol.2022.282127
Impact of trisomy 19 on outcome according to genetic makeup in patients with acute myeloid leukemia
Abstract
We retrospectively studied 97 acute myeloid leukemia patients with trisomy 19 (median age at diagnosis 57 years; range, 17- 83 years) treated between 2001 and 2019 within two multicenter study groups. Trisomy 19 occurred alone in ten (10.5%) patients, with additional abnormalities being present in non-complex karyotypes in eight (8%) patients and in complex karyotypes in 79 (82%) patients. Altogether, karyotypes characterized by trisomies only were present in 27 (28%) patients. Data on response and outcome of intensively treated patients were available for 92 cases. The median follow-up was 6.4 years (95% confidence interval [95% CI]: 2.9-9.0 years). The complete remission (CR) rate after induction therapy was 52% (48 patients); the early death rate was 10% (n=9). Notably, patients with trisomy 19 as the sole abnormality had a CR rate of 89%. Allogeneic hematopoietic stem cell transplantation (allo-HCT) was performed in 34 (35%) patients (CR, n=19; active disease, n=15). Five-year relapse-free and overall survival rates were 26% (95% CI: 16-43%) and 20% (95% CI: 13-31%), respectively. Overall survival rates were significantly higher in patients with trisomy 19 as the sole abnormality or within karyotypes characterized by trisomies only (P=0.05). An Andersen-Gill model including allo-HCT as a time-dependent covariable on overall survival revealed that trisomy 19 as the sole abnormality or within karyotypes characterized by trisomies only was a favorable factor (hazard ratio [HR]=0.47; P=0.021); higher age at diagnosis had an adverse impact (10 years difference; HR=1.29; P=0.002), whereas allo-HCT did not have a beneficial impact (odds ratio=1.45; P=0.21). In our cohort, patients with trisomy 19 as the sole abnormality or within karyotypes characterized by trisomies only had a high CR rate and better clinical outcome.
Figures




References
-
- Grimwade D, Hills RK, Moorman AV, et al. . Refinement of cytogenetic classification in acute myeloid leukemia: determination of prognostic significance of rare recurring chromosomal abnormalities among 5876 younger adult patients treated in the United Kingdom Medical Research Council trials. Blood. 2010;116(3):354-365. - PubMed
-
- O'Donnell MR, Tallman MS, Abboud CN, et al. . Acute myeloid leukemia, version 3.2017, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw. 2017;15(7):926-957. - PubMed
-
- Cornelissen JJ, van Putten WLJ, Verdonck LF, et al. . Results of a HOVON/SAKK donor versus no-donor analysis of myeloablative HLA-identical sibling stem cell transplantation in first remission acute myeloid leukemia in young and middle-aged adults: benefits for whom? Blood. 2007;109(9):3658-3666. - PubMed
-
- Bennett JM, Catovsky D, Daniel MT, et al. . Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med. 1985;103(4):620-625. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical