Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 24;35(16).
doi: 10.1088/1361-648X/acbc02.

Nonlinear Hall effect in monolayer phosphorene with broken inversion symmetry

Affiliations

Nonlinear Hall effect in monolayer phosphorene with broken inversion symmetry

Abdullah Yar et al. J Phys Condens Matter. .

Abstract

Nonlinear Hall effect (NLHE), a new member of the family of Hall effects, in monolayer phosphorene is investigated. We find that phosphorene exhibits pronounced NLHE, arising from the dipole moment of the Berry curvature induced by the proximity effect that breaks the inversion symmetry of the system. Remarkably, the nonlinear Hall response exhibits central minimum with a width on the order of the band gap, followed by two resonance-like peaks. Interestingly, each resonance peak of the Hall response shifts in the negative region of the chemical potential which is consistent with the shift of valence and conduction bands in the energy spectrum of monolayer phosphorene. It is observed that the two peaks are asymmetric, originated from anisotropy in the band structure of phosphorene. It is shown that the NLHE is very sensitive to the band gap and temperature of the system. Moreover, we find that a phase transition occurs in the nonlinear Hall response and nonlinear spin Hall conductivity of the system under the influence of spin-orbit interaction, tuned by the strength of interaction and band gap induced in the energy spectrum of monolayer phosphorene with broken inversion symmetry.

Keywords: band anisotropy; inversion symmetry; nonlinear Hall effect; phosphorene; spin–orbit interaction.

PubMed Disclaimer