Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 10;130(6):060403.
doi: 10.1103/PhysRevLett.130.060403.

Simulating the Interplay of Particle Conservation and Long-Range Coherence

Affiliations

Simulating the Interplay of Particle Conservation and Long-Range Coherence

Emanuele G Dalla Torre et al. Phys Rev Lett. .

Abstract

Lasers and Bose-Einstein condensates (BECs) exhibit macroscopic quantum coherence in seemingly unrelated ways. Lasers possess a well-defined global phase while the number of photons fluctuates. In BECs of atoms, instead, the number of particles is conserved and the global phase is undefined. Here, we use gate-based quantum circuits to create a unified framework that connects lasers and BEC states. Our approach relies on a scalable circuit that measures the total number of particles without destroying long-range coherence. We introduce two complementary probes of global and relative phase coherence, study how they are affected by measurements of the particle number, and implement them on a superconducting quantum computer by Rigetti. We find that particle conservation enhances long-range phase coherence, highlighting a mechanism used by superfluids and superconductors to gain phase stiffness.

PubMed Disclaimer