Equilibrium Dynamics of a Biomolecular Complex Analyzed at Single-amino Acid Resolution by Cryo-electron Microscopy
- PMID: 36828271
- DOI: 10.1016/j.jmb.2023.168024
Equilibrium Dynamics of a Biomolecular Complex Analyzed at Single-amino Acid Resolution by Cryo-electron Microscopy
Abstract
The biological function of macromolecular complexes depends not only on large-scale transitions between conformations, but also on small-scale conformational fluctuations at equilibrium. Information on the equilibrium dynamics of biomolecular complexes could, in principle, be obtained from local resolution (LR) data in cryo-electron microscopy (cryo-EM) maps. However, this possibility had not been validated by comparing, for a same biomolecular complex, LR data with quantitative information on equilibrium dynamics obtained by an established solution technique. In this study we determined the cryo-EM structure of the minute virus of mice (MVM) capsid as a model biomolecular complex. The LR values obtained correlated with crystallographic B factors and with hydrogen/deuterium exchange (HDX) rates obtained by mass spectrometry (HDX-MS), a gold standard for determining equilibrium dynamics in solution. This result validated a LR-based cryo-EM approach to investigate, with high spatial resolution, the equilibrium dynamics of biomolecular complexes. As an application of this approach, we determined the cryo-EM structure of two mutant MVM capsids and compared their equilibrium dynamics with that of the wild-type MVM capsid. The results supported a previously suggested linkage between mechanical stiffening and impaired equilibrium dynamics of a virus particle. Cryo-EM is emerging as a powerful approach for simultaneously acquiring information on the atomic structure and local equilibrium dynamics of biomolecular complexes.
Keywords: Atomic force microscopy; Cryo-electron microscopy; Equilibrium dynamics; Mechanical elasticity; Virus capsid.
Copyright © 2023 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
