Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa
- PMID: 36828478
- PMCID: PMC9966142
- DOI: 10.3390/toxins15020164
Type II Toxin-Antitoxin Systems in Pseudomonas aeruginosa
Abstract
Toxin-antitoxin (TA) systems are typically composed of a stable toxin and a labile antitoxin; the latter counteracts the toxicity of the former under suitable conditions. TA systems are classified into eight types based on the nature and molecular modes of action of the antitoxin component so far. The 10 pairs of TA systems discovered and experimentally characterised in Pseudomonas aeruginosa are type II TA systems. Type II TA systems have various physiological functions, such as virulence and biofilm formation, protection host against antibiotics, persistence, plasmid maintenance, and prophage production. Here, we review the type II TA systems of P. aeruginosa, focusing on their biological functions and regulatory mechanisms, providing potential applications for the novel drug design.
Keywords: Pseudomonas aeruginosa; biological function; regulatory mechanism; toxin–antitoxin system; type II.
Conflict of interest statement
The authors declare no conflict of interest.
Figures



Similar articles
-
PrrT/A, a Pseudomonas aeruginosa Bacterial Encoded Toxin-Antitoxin System Involved in Prophage Regulation and Biofilm Formation.Microbiol Spectr. 2022 Jun 29;10(3):e0118222. doi: 10.1128/spectrum.01182-22. Epub 2022 May 16. Microbiol Spectr. 2022. PMID: 35575497 Free PMC article.
-
Characterization of PfiT/PfiA toxin-antitoxin system of Pseudomonas aeruginosa that affects cell elongation and prophage induction.Environ Microbiol. 2020 Dec;22(12):5048-5057. doi: 10.1111/1462-2920.15102. Epub 2020 Jun 24. Environ Microbiol. 2020. PMID: 32458560
-
Plasmid pUM505 encodes a Toxin-Antitoxin system conferring plasmid stability and increased Pseudomonas aeruginosa virulence.Microb Pathog. 2017 Nov;112:259-268. doi: 10.1016/j.micpath.2017.09.060. Epub 2017 Sep 29. Microb Pathog. 2017. PMID: 28970172
-
RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria.Front Cell Infect Microbiol. 2021 May 18;11:661026. doi: 10.3389/fcimb.2021.661026. eCollection 2021. Front Cell Infect Microbiol. 2021. PMID: 34084755 Free PMC article. Review.
-
Toxin-antitoxin systems: Classification, biological roles, and applications.Microbiol Res. 2022 Nov;264:127159. doi: 10.1016/j.micres.2022.127159. Epub 2022 Aug 6. Microbiol Res. 2022. PMID: 35969944 Review.
Cited by
-
Type II bacterial toxin-antitoxins: hypotheses, facts, and the newfound plethora of the PezAT system.FEMS Microbiol Rev. 2023 Sep 5;47(5):fuad052. doi: 10.1093/femsre/fuad052. FEMS Microbiol Rev. 2023. PMID: 37715317 Free PMC article.
-
Toxin-mediated depletion of NAD and NADP drives persister formation in a human pathogen.EMBO J. 2024 Nov;43(21):5211-5236. doi: 10.1038/s44318-024-00248-5. Epub 2024 Sep 25. EMBO J. 2024. PMID: 39322758 Free PMC article.
-
Insight into the environmental cues modulating the expression of bacterial toxin-antitoxin systems.FEMS Microbiol Rev. 2025 Jan 14;49:fuaf007. doi: 10.1093/femsre/fuaf007. FEMS Microbiol Rev. 2025. PMID: 40052347 Free PMC article. Review.
-
The impact of quorum sensing and biofilm formation on antimicrobial resistance and virulence of XDR and MDR Pseudomonas aeruginosa in laying chickens.Iran J Vet Res. 2024;25(2):125-134. doi: 10.22099/IJVR.2024.47975.6969. Iran J Vet Res. 2024. PMID: 39624194 Free PMC article.
-
A plasmid-encoded inactive toxin-antitoxin system MtvT/MtvA regulates plasmid conjugative transfer and bacterial virulence in Pseudomonas aeruginosa.Nucleic Acids Res. 2025 Feb 8;53(4):gkaf075. doi: 10.1093/nar/gkaf075. Nucleic Acids Res. 2025. PMID: 39950345 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources