The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum
- PMID: 36838257
- PMCID: PMC9967746
- DOI: 10.3390/microorganisms11020292
The Influence of Symbiosis on the Proteome of the Exaiptasia Endosymbiont Breviolum minutum
Abstract
The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.
Keywords: Aiptasia; Breviolum minutum; free-living; proteomics; symbiosis.
Conflict of interest statement
The authors declare that they have no competing or financial interest.
Figures



Similar articles
-
Proteomes of native and non-native symbionts reveal responses underpinning host-symbiont specificity in the cnidarian-dinoflagellate symbiosis.ISME J. 2024 Jan 8;18(1):wrae122. doi: 10.1093/ismejo/wrae122. ISME J. 2024. PMID: 38988135 Free PMC article.
-
Influence of Symbiont Species on the Glycerol and Glucose Pools in a Model Cnidarian-Dinoflagellate Symbiosis.Biol Bull. 2020 Oct;239(2):143-151. doi: 10.1086/710349. Epub 2020 Sep 29. Biol Bull. 2020. PMID: 33151753
-
Immunolocalization of Metabolite Transporter Proteins in a Model Cnidarian-Dinoflagellate Symbiosis.Appl Environ Microbiol. 2022 Jun 28;88(12):e0041222. doi: 10.1128/aem.00412-22. Epub 2022 Jun 9. Appl Environ Microbiol. 2022. PMID: 35678605 Free PMC article.
-
Host and Symbiont Cell Cycle Coordination Is Mediated by Symbiotic State, Nutrition, and Partner Identity in a Model Cnidarian-Dinoflagellate Symbiosis.mBio. 2020 Mar 10;11(2):e02626-19. doi: 10.1128/mBio.02626-19. mBio. 2020. PMID: 32156819 Free PMC article.
-
How does an animal behave like a plant? Physiological and molecular adaptations of zooxanthellae and their hosts to symbiosis.C R Biol. 2018 May-Jun;341(5):276-280. doi: 10.1016/j.crvi.2018.03.007. Epub 2018 Apr 9. C R Biol. 2018. PMID: 29650460 Review.
Cited by
-
Reproductive resilience: pathways to gametogenic success in Montipora capitata after bleaching.Sci Rep. 2024 Nov 13;14(1):27765. doi: 10.1038/s41598-024-78768-7. Sci Rep. 2024. PMID: 39532979 Free PMC article.
-
OMICS Approaches to Assess Dinoflagellate Responses to Chemical Stressors.Biology (Basel). 2023 Sep 13;12(9):1234. doi: 10.3390/biology12091234. Biology (Basel). 2023. PMID: 37759633 Free PMC article. Review.
-
Proteomes of native and non-native symbionts reveal responses underpinning host-symbiont specificity in the cnidarian-dinoflagellate symbiosis.ISME J. 2024 Jan 8;18(1):wrae122. doi: 10.1093/ismejo/wrae122. ISME J. 2024. PMID: 38988135 Free PMC article.
-
Co-option of immune and digestive cellular machinery to support photosymbiosis in amoebocytes of the upside-down jellyfish Cassiopea xamachana.J Exp Biol. 2025 Jul 15;228(14):jeb249849. doi: 10.1242/jeb.249849. Epub 2025 May 12. J Exp Biol. 2025. PMID: 40110628 Free PMC article.
-
Inhibiting inositol transport disrupts metabolite profiles and mimics heat stress in a model cnidarian-Symbiodiniaceae symbiosis.Commun Biol. 2025 May 15;8(1):755. doi: 10.1038/s42003-025-08182-w. Commun Biol. 2025. PMID: 40374873 Free PMC article.
References
-
- Veron J.E.N., Hoegh-Guldberg O., Lenton T.M., Lough J.M., Obura D.O., Pearce-Kelly P., Sheppard C.R.C., Spalding M., Stafford-Smith M.G., Rogers A.D. The Coral Reef Crisis: The Critical Importance of <350 Ppm CO2. Mar. Pollut. Bull. 2009;58:1428–1436. doi: 10.1016/j.marpolbul.2009.09.009. - DOI - PubMed
-
- Muscatine L., Porter J.W. Reef Corals: Mutualistic Symbioses Adapted to Nutrient-Poor Environments. Bioscience. 1977;27:454–460. doi: 10.2307/1297526. - DOI
-
- Matthews J.L., Crowder C.M., Oakley C.A., Lutz A., Roessner U., Meyer E., Grossman A.R., Weis V.M., Davy S.K. Optimal Nutrient Exchange and Immune Responses Operate in Partner Specificity in the Cnidarian-Dinoflagellate Symbiosis. Proc. Natl. Acad. Sci. USA. 2017;114:13194–13199. doi: 10.1073/pnas.1710733114. - DOI - PMC - PubMed
-
- Hillyer K.E., Dias D.A., Lutz A., Wilkinson S.P., Roessner U., Davy S.K. Metabolite Profiling of Symbiont and Host during Thermal Stress and Bleaching in the Coral Acropora aspera. Coral Reefs. 2017;36:105–118. doi: 10.1007/s00338-016-1508-y. - DOI
Grants and funding
LinkOut - more resources
Full Text Sources