Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Feb 15;15(2):654.
doi: 10.3390/pharmaceutics15020654.

In Silico Studies to Support Vaccine Development

Affiliations
Review

In Silico Studies to Support Vaccine Development

Leonor Saldanha et al. Pharmaceutics. .

Abstract

The progress that has been made in computer science positioned in silico studies as an important and well-recognized methodology in the drug discovery and development process. It has numerous advantages in terms of costs and also plays a huge impact on the way the research is conducted since it can limit the use of animal models leading to more sustainable research. Currently, human trials are already being partly replaced by in silico trials. EMA and FDA are both endorsing these studies and have been providing webinars and guidance to support them. For instance, PBPK modeling studies are being used to gather data on drug interactions with other drugs and are also being used to support clinical and regulatory requirements for the pediatric population, pregnant women, and personalized medicine. This trend evokes the need to understand the role of in silico studies in vaccines, considering the importance that these products achieved during the pandemic and their promising hope in oncology. Vaccines are safer than other current oncology treatments. There is a huge variety of strategies for developing a cancer vaccine, and some of the points that should be considered when designing the vaccine technology are the following: delivery platforms (peptides, lipid-based carriers, polymers, dendritic cells, viral vectors, etc.), adjuvants (to boost and promote inflammation at the delivery site, facilitating immune cell recruitment and activation), choice of the targeted antigen, the timing of vaccination, the manipulation of the tumor environment, and the combination with other treatments that might cause additive or even synergistic anti-tumor effects. These and many other points should be put together to outline the best vaccine design. The aim of this article is to perform a review and comprehensive analysis of the role of in silico studies to support the development of and design of vaccines in the field of oncology and infectious diseases. The authors intend to perform a literature review of all the studies that have been conducted so far in preparing in silico models and methods to support the development of vaccines. From this point, it was possible to conclude that there are few in silico studies on vaccines. Despite this, an overview of how the existing work could support the design of vaccines is described.

Keywords: PBPK; PopPK; computational; in silico; population pharmacokinetics; vaccines.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
PRISMA flow-chart approach illustrates how the screening was performed.

Similar articles

Cited by

References

    1. Greenwood B. The contribution of vaccination to global health: Past, present and future. Philos Trans. R. Soc. Lond B Biol. Sci. 2014;369:20130433. doi: 10.1098/rstb.2013.0433. - DOI - PMC - PubMed
    1. Gebre M.S., Brito L.A., Tostanoski L.H., Edwards D.K., Carfi A., Barouch D.H. Novel approaches for vaccine development. Cell. 2021;184:1589–1603. doi: 10.1016/j.cell.2021.02.030. - DOI - PMC - PubMed
    1. Schoenmaker L., Witzigmann D., Kulkarni J.A., Verbeke R., Kersten G., Jiskoot W., Crommelin D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021;601:120586. doi: 10.1016/j.ijpharm.2021.120586. - DOI - PMC - PubMed
    1. Paston S.J., Brentville V.A., Symonds P., Durrant L.G. Cancer Vaccines, Adjuvants, and Delivery Systems. Front. Immunol. 2021;12:627932. doi: 10.3389/fimmu.2021.627932. - DOI - PMC - PubMed
    1. Bilusic P.J.D.M. Cancer Vaccines. Hematol. Oncol. Clin. N. Am. 2019;33:199–214. - PubMed