Fetal magnetic resonance imaging artifacts: role of deep learning to improve imaging
- PMID: 36840982
- DOI: 10.1002/uog.26185
Fetal magnetic resonance imaging artifacts: role of deep learning to improve imaging
References
-
- Prayer D, Malinger G, De Catte L, De Keersmaecker B, Gonçalves LF, Kasprian G, Laifer-Narin S, Lee W, Millischer AE, Platt L, Prayer F, Pugash D, Salomon LJ, Sanz Cortes M, Stuhr F, Timor-Tritsch IE, Tutschek B, Twickler D, Raine-Fenning N; ISUOG Clinical Standards Committee. ISUOG Practice Guidelines (updated): performance of fetal magnetic resonance imaging. Ultrasound Obstet Gynecol 2023; 61: 278-287.
-
- Machado-Rivas F, Jaimes C, Kirsch JE, Gee MS. Image-quality optimization and artifact reduction in fetal magnetic resonance imaging. Pediatr Radiol 2020; 50: 1830-1838.
-
- Zhang Q, Ruan G, Yang W, Liu Y, Zhao K, Feng Q, Chen W, Wu EX, Feng Y. MRI Gibbs-ringing artifact reduction by means of machine learning using convolutional neural networks. Magn Reson Med 2019; 82: 2133-2145.
-
- Drukker L, Noble JA, Papageorghiou AT. Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 2020; 56: 498-505.
-
- Ramirez Zegarra R, Ghi T. Use of artificial intelligence and deep learning in fetal ultrasound imaging. Ultrasound Obstet Gynecol 2023; 62: 185-194.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
