Enhancement of biological effects of oxidised nano- and microplastics in human professional phagocytes
- PMID: 36842547
- DOI: 10.1016/j.etap.2023.104086
Enhancement of biological effects of oxidised nano- and microplastics in human professional phagocytes
Abstract
Micro and nanoplastics are ubiquitous pollutants that can cause adverse health effects even in humans. Effects of virgin and oxidised (simulating the aging processes) polystyrene nano (nPS) and micro particles (mPS) with diameters of 0.1 and 1 µm were studied on human professional phagocytes (i.e., monocyte cells THP-1 and macrophage-like mTHP-1 cells). After characterization by ATR-FTIR, UV-Vis spectroscopy, SEM and dynamic light-scattering analyses, the particles were FITC functionalised to quantify cellular uptake. Changes in the cell compartments were studied by acrydine orange and the pro-oxidant, cytotoxic and genotoxic effects were assessed. Phagocytosis was dose- and time- dependent and at 24 h 52% of nPS and 58% of mPS were engulfed. Despite the high homeostasis of professional phagocytes, significant ROS increases and DNA damage were observed after exposure to oxidised particles. The results highlight that the environmental aging processes enhances the adverse health effects of micro and nanoplastics.
Keywords: Environmental wear processes; Human monocyte; Macrophage-like cells; Nano and micro polystyrene particle; Pro-oxidant effects; Uptake.
Copyright © 2023 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
