Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 13;8(7):6940-6944.
doi: 10.1021/acsomega.2c07736. eCollection 2023 Feb 21.

Metal-Free Synthesis of Functionalized Quinolines from 2-Styrylanilines and 2-Methylbenzothiazoles/2-Methylquinolines

Affiliations

Metal-Free Synthesis of Functionalized Quinolines from 2-Styrylanilines and 2-Methylbenzothiazoles/2-Methylquinolines

Xiaoying Liu et al. ACS Omega. .

Abstract

A facile functionalization of C(sp3)-H bonds and tandem cyclization strategy to synthesize quinoline derivatives from 2-methylbenzothiazoles or 2-methylquinolines and 2-styrylanilines has been developed. This work avoids the requirement for transition metals, offering a mild approach to activation of C(sp3)-H bonds and formation of new C-C and C-N bonds. This strategy features excellent functional group tolerance and scaled-up synthetic capability, thus providing an efficient and environmentally friendly access to medicinally valuable quinolines.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
Selected quinoline- and benzothiazole-based structures.
Scheme 1
Scheme 1. (a and b) Synthesis of Quinoline Derivatives from 2-Styrylanilines
Scheme 2
Scheme 2. Cyclization of 2-Methylbenzothiazoles with 2-Styrylanilinesa
Reaction conditions: 1 (0.3 mmol), 2 (0.54 mmol), I2 (0.2 equiv), TBHP (3 equiv), 1.5 mL of DMSO, 120 °C. Reaction with 2-hydrazinylpyridine.
Scheme 3
Scheme 3. Cyclization of 2-Methylquinolines with 2-Styrylanilinesa
Reaction Conditions: 4 (0.3 mmol), 2 (0.54 mmol), I2 (0.2 equiv), TBHP (3 equiv), CH3COOH (1 equiv), 1.5 mL of DMSO, 120 °C.
Scheme 4
Scheme 4. Gram-Scale Synthesis
Scheme 5
Scheme 5. (a–d) Control Experiments
Scheme 6
Scheme 6. Proposed Mechanism

Similar articles

References

    1. Vitaku E.; Smith D. T.; Njardarson J. T. Analysis of the Structural Diversity, Substitution Patterns, and Frequency of Nitrogen Heterocycles among U.S. FDA Approved Pharmaceuticals. J. Med. Chem. 2014, 57, 10257–10274. 10.1021/jm501100b. - DOI - PubMed
    2. Heravi M. M.; Zadsirjan V. Prescribed drugs containing nitrogen heterocycles: an overview. RSC Adv. 2020, 10, 44247–44311. 10.1039/D0RA09198G. - DOI - PMC - PubMed
    3. Joule J. A. Natural products containing nitrogen heterocycles-some highlights 1990-2015. Adv. Heterocycl. Chem. 2016, 119, 81–106. 10.1016/bs.aihch.2015.10.005. - DOI
    4. Gao B.; Yang B.; Feng X.; Li C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Nat. Prod. Rep. 2022, 39, 139–162. 10.1039/D1NP00017A. - DOI - PubMed
    5. Haiduc I. Review Inverse coordination. Organic nitrogen heterocycles as coordination centers. A survey of molecular topologies and systematization. Part 1. Five-membered and smaller rings. J. Coord. Chem. 2019, 72, 2127–2159. 10.1080/00958972.2019.1641702. - DOI
    1. Shang X. F.; Morris-Natschke S. L.; Liu Y. Q.; Guo X.; Xu X. S.; Goto M.; Li J. C.; Yang G. Z.; Lee K. H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 2018, 38, 775–828. 10.1002/med.21466. - DOI - PMC - PubMed
    2. Ajani O. O.; Iyaye K. T.; Ademosun O. T. Recent advances in chemistry and therapeutic potential of functionalized quinoline motifs - a review. RSC Adv. 2022, 12, 18594–18614. 10.1039/D2RA02896D. - DOI - PMC - PubMed
    3. Michael J. P. Quinoline, quinazoline, and acridone alkaloids. Nat. Prod. Rep. 2008, 25, 166–187. 10.1039/B612168N. - DOI - PubMed
    4. Lihumis H. S.; Alameri A. A.; Zaooli R. H. A review on recent development and biological applications of benzothiazole derivatives. Prog. Chem. Biochem. Res. 2022, 5, 147–164. 10.22034/pcbr.2022.330703.1214. - DOI
    5. Moor L. F. E.; Vasconcelos T. R. A.; da R Reis R.; Pinto L. S. S.; Da Costa T. M. Quinoline: An Attractive Scaffold in Drug Design. Mini-Rev. Med. Chem. 2021, 21, 2209–2226. 10.2174/1389557521666210210155908. - DOI - PubMed
    1. Satarker S.; Ahuja T.; Banerjee M.; Dogra S.; Agarwal T.; Nampoothiri M. Hydroxychloroquine in COVID-19: Potential Mechanism of Action Against SARS-CoV-2. Curr. Pharmacol. Rep. 2020, 6, 203–211. 10.1007/s40495-020-00231-8. - DOI - PMC - PubMed
    1. Fu K. P.; Lafredo S. C.; Foleno B.; Isaacson D. M.; Barrett J. F.; Tobia A. J.; Rosenthale M. E. In vitro and in vivo antibacterial activities of levofloxacin (l-ofloxacin), an optically active ofloxacin. Antimicrob. Agents Chemother. 1992, 36, 860–866. 10.1128/AAC.36.4.860. - DOI - PMC - PubMed
    1. Bjornsti M. A.; Knab A. M.; Benedetti P. Yeast Saccharomyces cerevisiae as a model system to study the cytotoxic activity of the antitumor drug camptothecin. Cancer Chemother. Pharmacol. 1994, 34, S1–S5. 10.1007/BF00684856. - DOI - PubMed