Dichalcogenide and Metal Oxide Semiconductor-Based Composite to Support Plasmonic Catalysis
- PMID: 36844575
- PMCID: PMC9947995
- DOI: 10.1021/acsomega.2c06337
Dichalcogenide and Metal Oxide Semiconductor-Based Composite to Support Plasmonic Catalysis
Abstract
Nanocomposites comprising plasmon active metal nanostructures and semiconductors have been used to control the charge states in the metal to support catalytic activity. In this context dichalcogenides when combined with metal oxides offer the potential to control charge states in plasmonic nanomaterials. Using a model plasmonic mediated oxidation reaction p-amino thiophenol ↔ p-nitrophenol, we show that through the introduction of transition metal dichalcogenide nanomaterial, reaction outcomes can be influenced, achieved through controlling the occurrence of the reaction intermediate dimercaptoazobenzene by opening new electron transfer routes in a semiconductor-plasmonic system. This study demonstrates the ability to control plasmonic reactions by carefully controlling the choice of semiconductors.
© 2023 The Authors. Published by American Chemical Society.
Conflict of interest statement
The authors declare no competing financial interest.
Figures



Similar articles
-
Directional Damping of Plasmons at Metal-Semiconductor Interfaces.Acc Chem Res. 2022 Jul 5;55(13):1845-1856. doi: 10.1021/acs.accounts.2c00001. Epub 2022 Jun 13. Acc Chem Res. 2022. PMID: 35696292
-
Plasmon-driven water splitting enhancement on plasmonic metal-insulator-semiconductor hetero-nanostructures: unraveling the crucial role of interfacial engineering.Nanoscale. 2018 Aug 7;10(29):14290-14297. doi: 10.1039/c8nr03557a. Epub 2018 Jul 17. Nanoscale. 2018. PMID: 30015344
-
Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis.Adv Mater. 2021 Feb;33(6):e2000086. doi: 10.1002/adma.202000086. Epub 2020 Mar 23. Adv Mater. 2021. PMID: 32201994 Review.
-
Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface.J Am Chem Soc. 2011 Apr 13;133(14):5202-5. doi: 10.1021/ja200086g. Epub 2011 Mar 22. J Am Chem Soc. 2011. PMID: 21425795
-
Metal/Semiconductor hybrid nanostructures for plasmon-enhanced applications.Adv Mater. 2014 Aug 20;26(31):5274-309. doi: 10.1002/adma.201400203. Epub 2014 Apr 19. Adv Mater. 2014. PMID: 24753398 Review.
Cited by
-
p-Type Organic Semiconductor-Metal Nanoparticle Hybrid Film for the Enhancement of Raman and Fluorescence Detection.J Phys Chem C Nanomater Interfaces. 2025 Feb 12;129(7):3659-3666. doi: 10.1021/acs.jpcc.4c08030. eCollection 2025 Feb 20. J Phys Chem C Nanomater Interfaces. 2025. PMID: 40008202 Free PMC article.
References
-
- Lordan F.; Rice J. H.; Jose B.; Forster R. J.; Keyes T. E. Site Selective Surface Enhanced Raman on nanostructured cavities. Appl. Phys. Lett. 2011, 99 (3), 033104.10.1063/1.3615282. - DOI
-
- Damm S.; Lordan F.; Murphy A.; McMillen M.; Pollard R.; Rice J. H. Application of AAO matrix in aligned gold nanorod array substrates for surface-enhanced fluorescence and Raman scattering. Plasmonics 2014, 9 (6), 1371–1376. 10.1007/s11468-014-9751-y. - DOI
-
- Al-Alttar N.; Kennedy E.; Kopf I.; Giordani S.; Rice J. H. Withdrawn: Surface-enhanced Raman scattering from small numbers of single-walled carbon nanotubes and oxidised single-walled carbon nanotubes. Chem. Phys. Lett. 2012, 10.1016/j.cplett.2012.02.052. - DOI
-
- Fularz A.; Almohammed S.; Rice J. H. Oxygen incorporation-induced SERS enhancement in silver nanoparticle-decorated zno nanowires. ACS Appl. Nano Mater. 2020, 3 (2), 1666–1673. 10.1021/acsanm.9b02395. - DOI
LinkOut - more resources
Full Text Sources