Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus
- PMID: 36847892
- DOI: 10.1007/s11120-023-01003-3
Mutagenic analysis of the bundle-shaped phycobilisome from Gloeobacter violaceus
Abstract
Gloeobacter violaceus is an ancient cyanobacterium as it branches out from the basal position in the phylogenic tree of cyanobacteria. It lacks thylakoid membranes and its unique bundle-shaped type of phycobilisomes (PBS) for light harvesting in photosynthesis are located on the interior side of cytoplasmic membranes. The PBS from G. violaceus have two large linker proteins that are not present in any other PBS, Glr2806, and Glr1262, which are encoded by the genes glr2806 and glr1262, respectively. The location and functions of the linkers Glr2806 and Glr1262 are currently unclear. Here, we report the studies of mutagenetic analysis of glr2806 and the genes of cpeBA, encoding the β and α subunits of phycoerythrin (PE), respectively. In the mutant lacking glr2806, the length of the PBS rods remains unchanged, but the bundles are less tightly packed as examined by electron microscopy with negative staining. It is also shown that two hexamers are missing in the peripheral area of the PBS core, strongly suggesting that the linker Glr2806 is located in the core area instead of the rods. In the mutant lacking the cpeBA genes, PE is no longer present and the PBS rods have only three layers of phycocyanin hexamers. The construction of deletional mutants in G. violaceus, achieved for the first time, provides critical information for our understanding of its unique PBS and should be useful in studies of other aspects of this interesting organism as well.
Keywords: Cyanobacteria; Gloeobacter violaceus; Linker protein; Mutagenesis; Phycobilisome; Phycoerythrin.
© 2023. The Author(s), under exclusive licence to Springer Nature B.V.
Similar articles
-
New linker proteins in phycobilisomes isolated from the cyanobacterium Gloeobacter violaceus PCC 7421.FEBS Lett. 2006 Jun 12;580(14):3457-61. doi: 10.1016/j.febslet.2006.04.098. Epub 2006 May 15. FEBS Lett. 2006. PMID: 16714023
-
Interactions of linker proteins with the phycobiliproteins in the phycobilisome substructures of Gloeobacter violaceus.Photosynth Res. 2010 Dec;106(3):247-61. doi: 10.1007/s11120-010-9601-5. Epub 2010 Dec 7. Photosynth Res. 2010. PMID: 21136295
-
The phycocyanin-associated rod linker proteins of the phycobilisome of Gloeobacter violaceus PCC 7421 contain unusually located rod-capping domains.Biochim Biophys Acta. 2006 Feb;1757(2):130-4. doi: 10.1016/j.bbabio.2006.01.006. Biochim Biophys Acta. 2006. PMID: 16617515
-
[Cyanobacterial Phycobilisomes and Phycobiliproteins].Mikrobiologiia. 2015 Mar-Apr;84(2):131-43. Mikrobiologiia. 2015. PMID: 26263619 Review. Russian.
-
The structure of a "simple" phycobilisome.Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):159-80. doi: 10.1016/s0769-2609(83)80103-3. Ann Microbiol (Paris). 1983. PMID: 6416125 Review.
Cited by
-
The structural basis for light harvesting in organisms producing phycobiliproteins.Plant Cell. 2024 Oct 3;36(10):4036-4064. doi: 10.1093/plcell/koae126. Plant Cell. 2024. PMID: 38652697 Free PMC article. Review.
-
Light-induced structural adaptation of the bundle-shaped phycobilisome from thylakoid-lacking cyanobacterium Gloeobacter violaceus.Nat Commun. 2025 Jul 1;16(1):5956. doi: 10.1038/s41467-025-60673-w. Nat Commun. 2025. PMID: 40593595 Free PMC article.
-
Molecular glue for phycobilisome attachment to photosystem II in Synechococcus sp. PCC 7002.Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2415222122. doi: 10.1073/pnas.2415222122. Epub 2025 Jan 23. Proc Natl Acad Sci U S A. 2025. PMID: 39847327 Free PMC article.
-
A structure of the relict phycobilisome from a thylakoid-free cyanobacterium.Nat Commun. 2023 Dec 4;14(1):8009. doi: 10.1038/s41467-023-43646-9. Nat Commun. 2023. PMID: 38049400 Free PMC article.
References
-
- Adir N, Bar-Zvi S, Harris D (1861) The amazing phycobilisome. Biochim Biophys Acta Bioenerg 4:148047. https://doi.org/10.1016/j.bbabio.2019.07.002 - DOI
-
- Araki M, Shimada Y, Mimuro M, Tsuchiya T (2013) Establishment of the reporter system for a thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421. FEBS Open Bio 3:11–15. https://doi.org/10.1016/j.fob.2012.11.003 - DOI - PubMed
-
- Araki M, Akimoto S, Mimuro M, Tsuchiya T (2014) Artificially acquired chlorophyll b is highly acceptable to the thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421. Plant Physiol Biochem 81:155–162. https://doi.org/10.1016/j.plaphy.2014.01.006 - DOI - PubMed
-
- Black TA, Cai Y, Wolk CP (1993) Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9(1):77–84. https://doi.org/10.1111/j.1365-2958.1993.tb00985.x - DOI - PubMed
-
- Bryant DA, Guglielmi G, Tandeaudemarsac N, Castets AM, Cohenbazire G (1979) The structure of cyanobacterial phycobilisomes: a model. Arch Microbiol 123(2):113–127. https://doi.org/10.1007/Bf00446810 - DOI
MeSH terms
Substances
Supplementary concepts
Grants and funding
LinkOut - more resources
Full Text Sources