Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry
- PMID: 36854169
- PMCID: PMC10021010
- DOI: 10.1021/jacs.2c12564
Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry
Abstract
Herein, we report the synthesis, isolation, and characterization of two cationic organobismuth(II) compounds bearing N,C,N pincer frameworks, which model crucial intermediates in bismuth radical processes. X-ray crystallography uncovered a monomeric Bi(II) structure, while SQUID magnetometry in combination with NMR and EPR spectroscopy provides evidence for a paramagnetic S = 1/2 state. High-resolution multifrequency EPR at the X-, Q-, and W-band enable the precise assignment of the full g- and 209Bi A-tensors. Experimental data and DFT calculations reveal both complexes are metal-centered radicals with little delocalization onto the ligands.
Conflict of interest statement
The authors declare no competing financial interest.
Figures






References
-
- Power P. P. Main-group elements as transition metals. Nature 2010, 463, 171–177. 10.1038/nature08634. - DOI - PubMed
- Power P. P. Persistent and stable radicals of the heavier main group elements and related species. Chem. Rev. 2003, 103, 789–810. 10.1021/cr020406p. - DOI - PubMed
- Yang X.; Gianetti T. L.; Harbort J.; Wörle M. D.; Tan L.; Su C.-Y.; Jurt P.; Harmer J. R.; Grützmacher H. From 0 to II in one-electron steps: A series of ruthenium complexes supported by TropPPh2. Angew. Chem., Int. Ed. 2016, 55, 11999–12002. 10.1002/anie.201605687. - DOI - PubMed
-
- Planas O.; Wang F.; Leutzsch M.; Cornella J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 2020, 367, 313–317. 10.1126/science.aaz2258. - DOI - PubMed
- Planas O.; Peciukenas V.; Leutzsch M.; Nöthling N.; Pantazis D. A.; Cornella J. Mechanism of the Aryl–F bond-forming step from Bi(V) fluorides. J. Am. Chem. Soc. 2022, 144, 14489–14504. 10.1021/jacs.2c01072. - DOI - PMC - PubMed
- Wang F.; Planas O.; Cornella J. Bi(I)-catalyzed transfer-hydrogenation with ammonia-borane. J. Am. Chem. Soc. 2019, 141, 4235–4240. 10.1021/jacs.9b00594. - DOI - PMC - PubMed
- Pang Y.; Leutzsch M.; Nöthling N.; Cornella J. Catalytic activation of N2O at a low-valent bismuth redox platform. J. Am. Chem. Soc. 2020, 142, 19473–19479. 10.1021/jacs.0c10092. - DOI - PMC - PubMed
- Planas O.; Peciukenas V.; Cornella J. Bismuth-catalyzed oxidative coupling of arylboronic acids with triflate and nonaflate salts. J. Am. Chem. Soc. 2020, 142, 11382–11387. 10.1021/jacs.0c05343. - DOI - PMC - PubMed
- Pang Y.; Leutzsch M.; Nöthling N.; Katzenburg F.; Cornella J. Catalytic hydrodefluorination via oxidative addition, ligand metathesis, and reductive elimination at Bi(I)/Bi(III) centers. J. Am. Chem. Soc. 2021, 143, 12487–12493. 10.1021/jacs.1c06735. - DOI - PMC - PubMed
- Jurrat M.; Maggi L.; Lewis W.; Ball L. T. Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nat. Chem. 2020, 12, 260–269. 10.1038/s41557-020-0425-4. - DOI - PubMed
- Oberdorf K.; Hanft A.; Ramler J.; Krummenacher I.; Bickelhaupt F. M.; Poater J.; Lichtenberg C. Bismuth amides mediate facile and highly selective Pn–Pn radical-coupling reactions (Pn = N, P, As). Angew. Chem., Int. Ed. 2021, 60, 6441–6445. 10.1002/anie.202015514. - DOI - PMC - PubMed
-
- Yang X.; Reijerse E. J.; Bhattacharyya K.; Leutzsch M.; Kochius M.; Nöthling N.; Busch J.; Schnegg A.; Auer A. A.; Cornella J. Radical activation of N–H and O–H bonds at bismuth(II). J. Am. Chem. Soc. 2022, 144, 16535–16544. 10.1021/jacs.2c05882. - DOI - PMC - PubMed
- Mato M.; Spinnato D.; Leutzsch M.; Moon H. W.; Reijerse E.; J C.. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. ChemRxiv. 2022. - PMC - PubMed
- Schwamm R. J.; Lein M.; Coles M. P.; Fitchett C. M. Catalytic oxidative coupling promoted by bismuth TEMPOxide complexes. Chem. Commun. 2018, 54, 916–919. 10.1039/C7CC08402A. - DOI - PubMed
- Ramler J.; Krummenacher I.; Lichtenberg C. Well-defined, molecular bismuth compounds: Catalysts in photochemically induced radical dehydrocoupling reactions. Chem.—Eur. J. 2020, 26, 14551–14555. 10.1002/chem.202002219. - DOI - PMC - PubMed
-
- Lichtenberg C. Radical compounds of antimony and Bismuth. In Encyclopedia of Inorganic and Bioinorganic Chemistry 2020, 1–12. 10.1002/9781119951438.eibc2751. - DOI
- Hanna T. A.; Rieger A. L.; Rieger P. H.; Wang X. Evidence for an unstable Bi(II) radical from Bi–O bond homolysis. Implications in the rate-determining step of the SOHIO process. Inorg. Chem. 2002, 41, 3590–3592. 10.1021/ic0202864. - DOI - PubMed
- Yamago S.; Kayahara E.; Kotani M.; Ray B.; Kwak Y.; Goto A.; Fukuda T. Highly controlled living radical polymerization through dual activation of organobismuthines. Angew. Chem., Int. Ed. 2007, 46, 1304–1306. 10.1002/anie.200604473. - DOI - PubMed
- Casely I. J.; Ziller J. W.; Fang M.; Furche F.; Evans W. J. Facile bismuth–oxygen bond cleavage, C–H activation, and formation of a monodentate carbon-bound oxyaryl dianion, (C6H2tBu2-3,5-O-4)2–. J. Am. Chem. Soc. 2011, 133, 5244–5247. 10.1021/ja201128d. - DOI - PubMed
- Schwamm R. J.; Lein M.; Coles M. P.; Fitchett C. M. Bi–P bond homolysis as a route to reduced bismuth compounds and reversible activation of P4. Angew. Chem., Int. Ed. 2016, 55, 14798–14801. 10.1002/anie.201608615. - DOI - PubMed
- Kayahara E.; Yamago S. Development of an arylthiobismuthine cocatalyst in organobismuthine-mediated living radical polymerization: Applications for synthesis of ultrahigh molecular weight polystyrenes and polyacrylates. J. Am. Chem. Soc. 2009, 131, 2508–2513. 10.1021/ja8092899. - DOI - PubMed
- Hering-Junghans C.; Schulz A.; Thomas M.; Villinger A. Synthesis of mono-, di-, and triaminobismuthanes and observation of C–C coupling of aromatic systems with bismuth(III) chloride. Dalton Trans. 2016, 45, 6053–6059. 10.1039/C6DT00229C. - DOI - PubMed
- Zhao M.-G.; Hao T.-T.; Zhang X.; Ma J.-P.; Su J.-H.; Zheng W. Direct evidence for neutral N-pyrazolyl radicals: Paddlewheel dibismuthanes bearing prazolato lgands with vey sort Bi–Bi sngle bnds. Inorg. Chem. 2017, 56, 12678–12681. 10.1021/acs.inorgchem.7b01902. - DOI - PubMed
- Turner Z. R. Bismuth pyridine dipyrrolide complexes: a transient Bi(II) species which ring opens cyclic ethers. Inorg. Chem. 2019, 58, 14212–14227. 10.1021/acs.inorgchem.9b02314. - DOI - PubMed
-
- Schwamm R. J.; Harmer J. R.; Lein M.; Fitchett C. M.; Granville S.; Coles M. P. Isolation and characterization of a bismuth(II) radical. Angew. Chem., Int. Ed. 2015, 54, 10630–10633. 10.1002/anie.201504632. - DOI - PubMed
- Haak J.; Krüger J.; Abrosimov N. V.; Helling C.; Schulz S.; Cutsail Iii G. E. X-Band parallel-mode and multifrequency electron paramagnetic resonance spectroscopy of S = 1/2 bismuth centers. Inorg. Chem. 2022, 61, 11173–11181. 10.1021/acs.inorgchem.2c01141. - DOI - PMC - PubMed
- Ganesamoorthy C.; Helling C.; Wölper C.; Frank W.; Bill E.; Cutsail G. E.; Schulz S. From stable Sb- and Bi-centered radicals to a compound with a Ga = Sb double bond. Nat. Commun. 2018, 9, 87.10.1038/s41467-017-02581-2. - DOI - PMC - PubMed
- Weinert H. M.; Wölper C.; Haak J.; Cutsail G. E.; Schulz S. Synthesis, structure and bonding nature of heavy dipnictene radical anions. Chem. Sci. 2021, 12, 14024–14032. 10.1039/D1SC04230K. - DOI - PMC - PubMed
- Helling C.; Schulz S. Long-lived radicals of the heavier group 15 elements arsenic, antimony, and bismuth. Eur. J. Inorg. Chem. 2020, 2020, 3209–3221. 10.1002/ejic.202000571. - DOI
- Cutsail G. E. Applications of electron paramagnetic resonance spectroscopy to heavy main-group radicals. Dalton Trans. 2020, 49, 12128–12135. 10.1039/D0DT02436H. - DOI - PubMed
LinkOut - more resources
Full Text Sources