Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 15;145(10):5618-5623.
doi: 10.1021/jacs.2c12564. Epub 2023 Feb 28.

Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry

Affiliations

Synthesis, Isolation, and Characterization of Two Cationic Organobismuth(II) Pincer Complexes Relevant in Radical Redox Chemistry

Xiuxiu Yang et al. J Am Chem Soc. .

Abstract

Herein, we report the synthesis, isolation, and characterization of two cationic organobismuth(II) compounds bearing N,C,N pincer frameworks, which model crucial intermediates in bismuth radical processes. X-ray crystallography uncovered a monomeric Bi(II) structure, while SQUID magnetometry in combination with NMR and EPR spectroscopy provides evidence for a paramagnetic S = 1/2 state. High-resolution multifrequency EPR at the X-, Q-, and W-band enable the precise assignment of the full g- and 209Bi A-tensors. Experimental data and DFT calculations reveal both complexes are metal-centered radicals with little delocalization onto the ligands.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing financial interest.

Figures

Figure 1
Figure 1
(A) N,C,N organobismuth(II) complexes formed after Bi(III)–X homolysis; (B) state-of-the-art of known Bi(II) complexes.
Scheme 1
Scheme 1. Syntheses of Cationic Bi(II) Complexes
Figure 2
Figure 2
Solid-state structure of 3 (top) and 4 (bottom), using 50% probability ellipsoids. Solvents, hydrogen atoms (except the ones on C7 and C8), and disordered parts have been omitted for clarity.
Figure 3
Figure 3
EPR at the X-, Q-, and W-band of 3 and 4 (blue) with simulations (red) according to the SH parameters from Table 2. The marked (*) lines at the Q-band originate from a g ∼ 2 impurity.
Figure 4
Figure 4
(A to C) Magnetic field dependent spin energy levels (Breit–Rabi diagrams) along the x-, y-, and z-axis of the g-tensor. X-band EPR transitions are plotted as vertical red lines. (D) Corresponding roadmap representing the angular dependence of EPR resonances (theta: angle between the magnetic field and the z-axis of the g-tensor). Energy levels and EPR spectra have been obtained with SH parameters for 4.
Figure 5
Figure 5
DC magnetic susceptibility data from 2.0 to 300 K (black) and fits from the SH model from 7.6 to 300 K and 2 to 271 K (red traces) for 3 (top) and 4 (bottom), respectively.

References

    1. Power P. P. Main-group elements as transition metals. Nature 2010, 463, 171–177. 10.1038/nature08634. - DOI - PubMed
    2. Power P. P. Persistent and stable radicals of the heavier main group elements and related species. Chem. Rev. 2003, 103, 789–810. 10.1021/cr020406p. - DOI - PubMed
    3. Yang X.; Gianetti T. L.; Harbort J.; Wörle M. D.; Tan L.; Su C.-Y.; Jurt P.; Harmer J. R.; Grützmacher H. From 0 to II in one-electron steps: A series of ruthenium complexes supported by TropPPh2. Angew. Chem., Int. Ed. 2016, 55, 11999–12002. 10.1002/anie.201605687. - DOI - PubMed
    1. Planas O.; Wang F.; Leutzsch M.; Cornella J. Fluorination of arylboronic esters enabled by bismuth redox catalysis. Science 2020, 367, 313–317. 10.1126/science.aaz2258. - DOI - PubMed
    2. Planas O.; Peciukenas V.; Leutzsch M.; Nöthling N.; Pantazis D. A.; Cornella J. Mechanism of the Aryl–F bond-forming step from Bi(V) fluorides. J. Am. Chem. Soc. 2022, 144, 14489–14504. 10.1021/jacs.2c01072. - DOI - PMC - PubMed
    3. Wang F.; Planas O.; Cornella J. Bi(I)-catalyzed transfer-hydrogenation with ammonia-borane. J. Am. Chem. Soc. 2019, 141, 4235–4240. 10.1021/jacs.9b00594. - DOI - PMC - PubMed
    4. Pang Y.; Leutzsch M.; Nöthling N.; Cornella J. Catalytic activation of N2O at a low-valent bismuth redox platform. J. Am. Chem. Soc. 2020, 142, 19473–19479. 10.1021/jacs.0c10092. - DOI - PMC - PubMed
    5. Planas O.; Peciukenas V.; Cornella J. Bismuth-catalyzed oxidative coupling of arylboronic acids with triflate and nonaflate salts. J. Am. Chem. Soc. 2020, 142, 11382–11387. 10.1021/jacs.0c05343. - DOI - PMC - PubMed
    6. Pang Y.; Leutzsch M.; Nöthling N.; Katzenburg F.; Cornella J. Catalytic hydrodefluorination via oxidative addition, ligand metathesis, and reductive elimination at Bi(I)/Bi(III) centers. J. Am. Chem. Soc. 2021, 143, 12487–12493. 10.1021/jacs.1c06735. - DOI - PMC - PubMed
    7. Jurrat M.; Maggi L.; Lewis W.; Ball L. T. Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nat. Chem. 2020, 12, 260–269. 10.1038/s41557-020-0425-4. - DOI - PubMed
    8. Oberdorf K.; Hanft A.; Ramler J.; Krummenacher I.; Bickelhaupt F. M.; Poater J.; Lichtenberg C. Bismuth amides mediate facile and highly selective Pn–Pn radical-coupling reactions (Pn = N, P, As). Angew. Chem., Int. Ed. 2021, 60, 6441–6445. 10.1002/anie.202015514. - DOI - PMC - PubMed
    1. Yang X.; Reijerse E. J.; Bhattacharyya K.; Leutzsch M.; Kochius M.; Nöthling N.; Busch J.; Schnegg A.; Auer A. A.; Cornella J. Radical activation of N–H and O–H bonds at bismuth(II). J. Am. Chem. Soc. 2022, 144, 16535–16544. 10.1021/jacs.2c05882. - DOI - PMC - PubMed
    2. Mato M.; Spinnato D.; Leutzsch M.; Moon H. W.; Reijerse E.; J C.. Bismuth radical catalysis in the activation and coupling of redox-active electrophiles. ChemRxiv. 2022. - PMC - PubMed
    3. Schwamm R. J.; Lein M.; Coles M. P.; Fitchett C. M. Catalytic oxidative coupling promoted by bismuth TEMPOxide complexes. Chem. Commun. 2018, 54, 916–919. 10.1039/C7CC08402A. - DOI - PubMed
    4. Ramler J.; Krummenacher I.; Lichtenberg C. Well-defined, molecular bismuth compounds: Catalysts in photochemically induced radical dehydrocoupling reactions. Chem.—Eur. J. 2020, 26, 14551–14555. 10.1002/chem.202002219. - DOI - PMC - PubMed
    1. Lichtenberg C. Radical compounds of antimony and Bismuth. In Encyclopedia of Inorganic and Bioinorganic Chemistry 2020, 1–12. 10.1002/9781119951438.eibc2751. - DOI
    2. Hanna T. A.; Rieger A. L.; Rieger P. H.; Wang X. Evidence for an unstable Bi(II) radical from Bi–O bond homolysis. Implications in the rate-determining step of the SOHIO process. Inorg. Chem. 2002, 41, 3590–3592. 10.1021/ic0202864. - DOI - PubMed
    3. Yamago S.; Kayahara E.; Kotani M.; Ray B.; Kwak Y.; Goto A.; Fukuda T. Highly controlled living radical polymerization through dual activation of organobismuthines. Angew. Chem., Int. Ed. 2007, 46, 1304–1306. 10.1002/anie.200604473. - DOI - PubMed
    4. Casely I. J.; Ziller J. W.; Fang M.; Furche F.; Evans W. J. Facile bismuth–oxygen bond cleavage, C–H activation, and formation of a monodentate carbon-bound oxyaryl dianion, (C6H2tBu2-3,5-O-4)2–. J. Am. Chem. Soc. 2011, 133, 5244–5247. 10.1021/ja201128d. - DOI - PubMed
    5. Schwamm R. J.; Lein M.; Coles M. P.; Fitchett C. M. Bi–P bond homolysis as a route to reduced bismuth compounds and reversible activation of P4. Angew. Chem., Int. Ed. 2016, 55, 14798–14801. 10.1002/anie.201608615. - DOI - PubMed
    6. Kayahara E.; Yamago S. Development of an arylthiobismuthine cocatalyst in organobismuthine-mediated living radical polymerization: Applications for synthesis of ultrahigh molecular weight polystyrenes and polyacrylates. J. Am. Chem. Soc. 2009, 131, 2508–2513. 10.1021/ja8092899. - DOI - PubMed
    7. Hering-Junghans C.; Schulz A.; Thomas M.; Villinger A. Synthesis of mono-, di-, and triaminobismuthanes and observation of C–C coupling of aromatic systems with bismuth(III) chloride. Dalton Trans. 2016, 45, 6053–6059. 10.1039/C6DT00229C. - DOI - PubMed
    8. Zhao M.-G.; Hao T.-T.; Zhang X.; Ma J.-P.; Su J.-H.; Zheng W. Direct evidence for neutral N-pyrazolyl radicals: Paddlewheel dibismuthanes bearing prazolato lgands with vey sort Bi–Bi sngle bnds. Inorg. Chem. 2017, 56, 12678–12681. 10.1021/acs.inorgchem.7b01902. - DOI - PubMed
    9. Turner Z. R. Bismuth pyridine dipyrrolide complexes: a transient Bi(II) species which ring opens cyclic ethers. Inorg. Chem. 2019, 58, 14212–14227. 10.1021/acs.inorgchem.9b02314. - DOI - PubMed
    1. Schwamm R. J.; Harmer J. R.; Lein M.; Fitchett C. M.; Granville S.; Coles M. P. Isolation and characterization of a bismuth(II) radical. Angew. Chem., Int. Ed. 2015, 54, 10630–10633. 10.1002/anie.201504632. - DOI - PubMed
    2. Haak J.; Krüger J.; Abrosimov N. V.; Helling C.; Schulz S.; Cutsail Iii G. E. X-Band parallel-mode and multifrequency electron paramagnetic resonance spectroscopy of S = 1/2 bismuth centers. Inorg. Chem. 2022, 61, 11173–11181. 10.1021/acs.inorgchem.2c01141. - DOI - PMC - PubMed
    3. Ganesamoorthy C.; Helling C.; Wölper C.; Frank W.; Bill E.; Cutsail G. E.; Schulz S. From stable Sb- and Bi-centered radicals to a compound with a Ga = Sb double bond. Nat. Commun. 2018, 9, 87.10.1038/s41467-017-02581-2. - DOI - PMC - PubMed
    4. Weinert H. M.; Wölper C.; Haak J.; Cutsail G. E.; Schulz S. Synthesis, structure and bonding nature of heavy dipnictene radical anions. Chem. Sci. 2021, 12, 14024–14032. 10.1039/D1SC04230K. - DOI - PMC - PubMed
    5. Helling C.; Schulz S. Long-lived radicals of the heavier group 15 elements arsenic, antimony, and bismuth. Eur. J. Inorg. Chem. 2020, 2020, 3209–3221. 10.1002/ejic.202000571. - DOI
    6. Cutsail G. E. Applications of electron paramagnetic resonance spectroscopy to heavy main-group radicals. Dalton Trans. 2020, 49, 12128–12135. 10.1039/D0DT02436H. - DOI - PubMed