Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jan-Mar;29(1):14604582221136712.
doi: 10.1177/14604582221136712.

Identifying adverse drug reactions from patient reviews on social media using natural language processing

Affiliations
Free article

Identifying adverse drug reactions from patient reviews on social media using natural language processing

Oladapo Oyebode et al. Health Informatics J. 2023 Jan-Mar.
Free article

Abstract

Drugs have the potential of causing adverse reactions or side effects and prior knowledge of these reactions can help prevent hospitalizations and premature deaths. Public databases of common adverse drug reactions (ADRs) depend on individual reports from drug manufacturers and health professionals. However, this passive approach to ADR surveillance has been shown to suffer from severe under-reporting. Social media, such as online health forums where patients across the globe willingly share their drug intake experience, is a viable and rich source for detecting unreported ADRs. In this paper, we design an ADR Detection Framework (ADF) using Natural Language Processing techniques to identify ADRs in drug reviews mined from social media. We demonstrate the applicability of ADF in the domain of Diabetes by identifying ADRs associated with diabetes drugs using data extracted from three online patient-based health forums: askapatient.com, webmd.com, and iodine.com. Next, we analyze and visualize the ADRs identified and present valuable insights including prevalent and less prevalent ADRs, age and gender differences in ADRs detected, as well as the previously unknown ADRs detected by our framework. Our work could promote active (real-time) ADR surveillance and also advance pharmacovigilance research.

Keywords: adverse drug events; framework; health informatics; index terms—Adverse drug reactions; natural language processing; patient reviews; pharmacovigilance; side effects; social media; social networks; text mining.

PubMed Disclaimer

Publication types

LinkOut - more resources