Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 28;42(3):112185.
doi: 10.1016/j.celrep.2023.112185. Epub 2023 Feb 28.

NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking

Affiliations

NF-κB activation enhances STING signaling by altering microtubule-mediated STING trafficking

Lulu Zhang et al. Cell Rep. .

Abstract

It is widely known that stimulator of interferon genes (STING) can trigger nuclear factor κB (NF-κB) signaling. However, whether and how the NF-κB pathway affects STING signaling remains largely unclear. Here, we report that Toll-like receptor (TLR)-, interleukin-1 receptor (IL-1R)-, tumor necrosis factor receptor (TNFR)-, growth factor receptor (GF-R)-, and protein kinase C (PKC)-mediated NF-κB signaling activation dramatically enhances STING-mediated immune responses. Mechanistically, we find that STING interacts with microtubules, which plays a crucial role in STING intracellular trafficking. We further uncover that activation of the canonical NF-κB pathway induces microtubule depolymerization, which inhibits STING trafficking to lysosomes for degradation. This leads to increased levels of activated STING that persist for a longer period of time. The synergy between NF-κB and STING triggers a cascade-amplified interferon response and robust host antiviral defense. In addition, we observe that several gain-of-function mutations of STING abolish the microtubule-STING interaction and cause abnormal STING trafficking and ligand-independent STING autoactivation. Collectively, our data demonstrate that NF-κB activation enhances STING signaling by regulating microtubule-mediated STING trafficking.

Keywords: CP: Immunology; NF-κB signaling pathways; SAVI; STING degradation; Toll-like receptors; innate immunity; microtubule depolymerization.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Publication types