The organization of the phycobilisome-photosystem I supercomplex depends on the ratio between two different phycobilisome linker proteins
- PMID: 36859522
- DOI: 10.1007/s43630-023-00397-2
The organization of the phycobilisome-photosystem I supercomplex depends on the ratio between two different phycobilisome linker proteins
Abstract
The phycobilisome (PBS) is an antenna protein complex in cyanobacteria, Glaucocystophytes, and red algae. In the standard PBS, the rod-core PBS, the rods are connected to the core by the rod-core linker protein CpcG. The rod-core PBS transfers the light energy mainly to photosystem (PS) II and to a lesser extent to PSI. Cyanobacteria assemble another type of PBS, the CpcL-PBS, which consists of only one rod. This rod-type PBS is connected to the thylakoid membrane by the linker protein CpcL and is a PSI-specific antenna. In the filamentous heterocyst-forming cyanobacterium Anabaena (Nostoc) sp. PCC 7120, the CpcL-PBS forms a complex with the tetrameric PSI (PBS-PSI supercomplex). The CpcL-PBS and the rod part of the rod-core PBS are identical except for the linker proteins CpcL and CpcG. How cells control the accumulation of the two different types of PBS is unknown. Here, we analyzed two mutant strains which either lack the major rod-core linker CpcG4 or overexpress the rod-membrane linker CpcL. In both mutant strains, more and larger PBS-PSI supercomplexes accumulated compared to the wild type. Our results suggest that CpcL and CpcG4 compete for the same phycobiliprotein pool, and therefore the CpcL/CpcG4 ratio determines the levels of PBS-PSI supercomplexes. We propose that the CpcL-PBS and the rod-core PBS fulfill distinct functions in light harvesting.
Keywords: CpcL-phycobilisome; Linker protein; Photosystem I-specific antenna; Phycobilisome.
© 2023. The Author(s).
Similar articles
-
Attachment of phycobilisomes in an antenna-photosystem I supercomplex of cyanobacteria.Proc Natl Acad Sci U S A. 2014 Feb 18;111(7):2512-7. doi: 10.1073/pnas.1320599111. Epub 2014 Feb 3. Proc Natl Acad Sci U S A. 2014. PMID: 24550276 Free PMC article.
-
Tight association of CpcL with photosystem I in Anabaena sp. PCC 7120 grown under iron-deficient conditions.Biochim Biophys Acta Bioenerg. 2023 Nov 1;1864(4):148993. doi: 10.1016/j.bbabio.2023.148993. Epub 2023 Jun 13. Biochim Biophys Acta Bioenerg. 2023. PMID: 37321385
-
The membrane-associated CpcG2-phycobilisome in Synechocystis: a new photosystem I antenna.Plant Physiol. 2007 Jun;144(2):1200-10. doi: 10.1104/pp.107.099267. Epub 2007 Apr 27. Plant Physiol. 2007. PMID: 17468217 Free PMC article.
-
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis.Int J Mol Sci. 2023 Jan 24;24(3):2290. doi: 10.3390/ijms24032290. Int J Mol Sci. 2023. PMID: 36768613 Free PMC article. Review.
-
Phycobilisome: architecture of a light-harvesting supercomplex.Photosynth Res. 2013 Oct;116(2-3):265-76. doi: 10.1007/s11120-013-9905-3. Epub 2013 Oct 1. Photosynth Res. 2013. PMID: 24081814 Review.
Cited by
-
Photosynthesis in Synechocystis sp. PCC 6803 is not optimally regulated under very high CO2.Appl Microbiol Biotechnol. 2025 Jan 30;109(1):33. doi: 10.1007/s00253-025-13416-2. Appl Microbiol Biotechnol. 2025. PMID: 39883173 Free PMC article.
References
-
- Bryant, D. A., & Canniffe, D. P. (2018). How nature designs light-harvesting antenna systems: design principles and functional realization in chlorophototrophic prokaryotes. Journal of Physics B: Atomic, Molecular and Optical Physics, 51, 033001. https://doi.org/10.1088/1361-6455/aa9c3c - DOI
-
- Liu, L.-N., Chen, X.-L., Zhang, Y.-Z., & Zhou, B.-C. (2005). Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: An overview. Biochimica et Biophysica Acta, 1708, 10. https://doi.org/10.1016/j.bbabio.2005.04.001 - DOI
-
- Watanabe, M., & Ikeuchi, M. (2013). Phycobilisome: architecture of a light-harvesting supercomplex. Photosynthesis Research, 12, 265–276. - DOI
-
- Adir, N. (2005). Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant. Photosynthesis Research, 85, 15–32. https://doi.org/10.1007/s11120-004-2143-y - DOI - PubMed
-
- Liu, L.-N., Chen, X.-L., Zhang, X.-Y., Zhang, Y.-Z., & Zhou, B.-C. (2005). One-step chromatography method for efficient separation and purification of R-phycoerythrin from Polysiphonia urceolata. Journal of Biotechnology, 116, 91–100. https://doi.org/10.1016/j.jbiotec.2004.09.017 - DOI - PubMed