Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 23:653:83-92.
doi: 10.1016/j.bbrc.2023.02.047. Epub 2023 Feb 23.

De-glutathionylases: The resilient underdogs to keep neurodegeneration at bay

Affiliations

De-glutathionylases: The resilient underdogs to keep neurodegeneration at bay

Surupa Chakraborty et al. Biochem Biophys Res Commun. .

Abstract

Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.

PubMed Disclaimer