Geography, environment, and colonization history interact with morph type to shape genomic variation in an Arctic fish
- PMID: 36869618
- DOI: 10.1111/mec.16913
Geography, environment, and colonization history interact with morph type to shape genomic variation in an Arctic fish
Abstract
Polymorphic species are useful models for investigating the evolutionary processes driving diversification. Such processes include colonization history as well as contemporary selection, gene flow, and genetic drift, which can vary between intraspecific morphs as a function of their distinct life histories. The interactive and relative influence of such evolutionary processes on morph differentiation critically informs morph-specific management decisions and our understanding of incipient speciation. We therefore investigated how geographic distance, environmental conditions, and colonization history interacted with morph migratory capacity in the highly polymorphic fish species, Arctic Charr (Salvelinus alpinus). Using an 87 k SNP chip we genetically characterized recently evolved anadromous, resident, and landlocked charr collected from 45 locations across a secondary contact zone of three charr glacial lineages in eastern Canada. A strong pattern of isolation by distance across all populations suggested geographic distance principally shaped genetic structure. Landlocked populations had lower genetic diversities and higher genetic differentiation than anadromous populations. However, effective population size was generally temporally stable in landlocked populations in comparison to anadromous populations. Genetic diversity positively correlated with latitude, potentially indicating southern anadromous populations' vulnerability to climate change and greater introgression between the Arctic and Atlantic glacial lineages in northern Labrador. Local adaptation was suggested by the observation of several environmental variables strongly associating with functionally relevant outlier genes including a region on chromosome AC21 potentially associated with anadromy. Our results demonstrate that gene flow, colonization history, and local adaptation uniquely interact to influence the genetic variation and evolutionary trajectory of populations.
Keywords: anadromy; colonization history; gene flow; isolation by distance; local adaptation; morph.
© 2023 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.
References
REFERENCES
-
- Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655-1664.
-
- Anderson, T. (1985). Rivers of Labrador (p. 81). Canadian Special Publication of Fisheries and Aquatic Sciences.
-
- Barrette, C., Brown, R., Way, R., Mailhot, A., Diaconescu, E. P., Grenier, P., Chaumont, D., Dumont, D., Sévigny, C., Howell, S., & Senneville, S. (2020). Chapter 2: Nunavik and Nunatsiavut regional climate information update. In P. Ropars, M. Allard, & M. Lemay (Eds.), Nunavik and Nunatsiavut: From science to policy, an integrated regional impact study (IRIS) of climate change and modernization, second iteration. ArcticNet Inc.
-
- Bernatchez, L., & Wilson, C. C. (1998). Comparative phylogeography of Nearctic and Palearctic fishes. Molecular Ecology, 7(4), 431-452.
-
- Brunner, P. C., Douglas, M. R., Osinov, A., Wilson, C. C., & Bernatchez, L. (2001). Holarctic Phylogeography of Arctic Charr (Salvelinus Alpinus L.). Inferred from Mitochondrial DNA Sequences., 55(3), 573-586.
Publication types
MeSH terms
Associated data
LinkOut - more resources
Full Text Sources