Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 30:235:123910.
doi: 10.1016/j.ijbiomac.2023.123910. Epub 2023 Mar 3.

Feather-weight cryostructured thiourea-chitosan aerogels for highly efficient removal of heavy metal ions and bacterial pathogens

Affiliations

Feather-weight cryostructured thiourea-chitosan aerogels for highly efficient removal of heavy metal ions and bacterial pathogens

Claudiu-Augustin Ghiorghita et al. Int J Biol Macromol. .

Abstract

Designing of economically feasible and recyclable polysaccharide-based materials with thiourea functional groups for removal of specific metal ions such as Ag(I), Au(I), Pb(II) or Hg(II) remains a major challenge for environmental applications. Here, we introduce ultra-lightweight thiourea-chitosan (CSTU) aerogels engineered by combining successive freeze-thawing cycles with covalent formaldehyde-mediated cross-linking and lyophilization. All aerogels exhibited outstanding low densities (0.0021-0.0103 g/cm3) and remarkable high specific surface areas (416.64-447.26 m2/g), outperforming the common polysaccharide-based aerogels. Benefitting from their superior structural features (honeycomb interconnected pores and high porosity), CSTU aerogels demonstrate fast sorption rates and excellent performance in sorption of heavy metal ions from highly-concentrated single or binary-component mixtures (1.11 mmol Ag (I)/g and 0.48 mmol Pb(II)/g). A remarkable recycling stability was observed after five sorption-desorption-regeneration cycles when the removal efficiency was up to 80 %. These results support the high potential of CSTU aerogels in the treatment of metal-containing wastewater. Moreover, the Ag(I)-loaded CSTU aerogels exhibited excellent antimicrobial properties against Escherichia coli and Staphylococcus aureus bacterial strains, the killing rate being around 100 %. This data points towards the potential application of developed aerogels in circular economy, by employing the spent Ag(I)-loaded aerogels in the biological decontamination of waters.

Keywords: Aerogels; Chitosan; Heavy metal ions; Sorption; Wastewater purification.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources