Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 6;14(9):2330-2335.
doi: 10.1039/d2sc07103g. eCollection 2023 Mar 1.

Enantioselective construction of triaryl-substituted all-carbon quaternary stereocenters via organocatalytic arylation of oxindoles with azonaphthalenes

Affiliations

Enantioselective construction of triaryl-substituted all-carbon quaternary stereocenters via organocatalytic arylation of oxindoles with azonaphthalenes

Pengquan Chen et al. Chem Sci. .

Abstract

Azonaphthalenes have been verified as a class of effective arylation reagents in a variety of asymmetric transformations. Here a highly efficient approach to construct triaryl-substituted all-carbon quaternary stereocenters through chiral phosphoric acid-catalyzed enantioselective arylation of 3-aryl-2-oxindoles with azonaphthalenes is disclosed. This chemistry is scalable and displays excellent functional group tolerance, furnishing a series of 3,3-disubstituted 2-oxindole derivatives in good yields with excellent enantiocontrol. Preliminary mechanistic data suggest that the initially formed direct addition intermediate undergoes intramolecular annulation under acidic reaction conditions.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Representative catalytic asymmetric construction triaryl-substituted all-carbon quaternary centers and our design.
Scheme 2
Scheme 2. Substrate generality of the CPA catalyzed enantioselective arylation reaction. Reaction conditions: 1 (0.20 mmol), 2 (0.22 mmol), (S)-C10 (10 mol%) in toluene (4 mL) at 80 °C for 24 h under argon, unless noted otherwise. Yield of the isolated product is given. The ee values were determined by HPLC analysis using a chiral stationary phase. aReaction was carried out at 25 °C for 48 h.
Scheme 3
Scheme 3. Gram-scale synthesis and mechanistic investigations.
Scheme 4
Scheme 4. Proposed reaction mechanism and stereocontrol mode.

References

    1. Liu Y. Han S.-J. Liu W.-B. Stoltz B. M. Acc. Chem. Res. 2015;48:740–751. doi: 10.1021/ar5004658. - DOI - PMC - PubMed
    2. Han S.-J. Vogt F. Krishnan S. May J. A. Gatti M. Virgil S. C. Stoltz B. M. Org. Lett. 2014;16:3316–3319. doi: 10.1021/ol5013263. - DOI - PMC - PubMed
    3. Han S.-J. Vogt F. May J. A. Krishnan S. Gatti M. Virgil S. C. Stoltz B. M. J. Org. Chem. 2015;80:528–547. doi: 10.1021/jo502534g. - DOI - PMC - PubMed
    1. Uddin M. K. Reignier S. G. Coulter T. Montalbetti C. Grånäs C. Butcher S. Krog-Jensen C. Felding J. Bioorg. Med. Chem. Lett. 2007;17:2854–2857. doi: 10.1016/j.bmcl.2007.02.060. - DOI - PubMed
    2. Paira P. Hazra A. Kumar S. Paira R. Sahu K. B. Naskar S. saha P. Mondal S. Maity A. Banerjee S. Mondal N. B. Bioorg. Med. Chem. Lett. 2009;19:4786–4789. doi: 10.1016/j.bmcl.2009.06.049. - DOI - PubMed
    1. Corey E. J. Guzman-Perez A. Angew. Chem., Int. Ed. 1998;37:388–401. doi: 10.1002/(SICI)1521-3773(19980302)37:4<388::AID-ANIE388>3.0.CO;2-V. - DOI - PubMed
    2. Douglas C. J. Overman L. E. Proc. Natl. Acad. Sci. U. S. A. 2004;101:5363–5367. doi: 10.1073/pnas.0307113101. - DOI - PMC - PubMed
    3. Trost B. M. Jiang C. Synthesis. 2006;3:369–396. doi: 10.1055/s-2006-926302. - DOI
    4. Hawner C. Alexakis A. Chem. Commun. 2010;46:7295–7306. doi: 10.1039/C0CC02309D. - DOI - PubMed
    5. Das J. P. Marek I. Chem. Commun. 2011;47:4593–4623. doi: 10.1039/C0CC05222A. - DOI - PubMed
    1. Evans P. A. Oliver S. Chae J. J. Am. Chem. Soc. 2012;134:19314–19317. doi: 10.1021/ja306602g. - DOI - PubMed
    2. Gao L. Kang B. C. Ryu D. H. J. Am. Chem. Soc. 2013;135:14556–14559. doi: 10.1021/ja408196g. - DOI - PubMed
    3. Quasdorf K. W. Overman L. E. Nature. 2014;516:181–191. doi: 10.1038/nature14007. - DOI - PMC - PubMed
    4. Marek I. Minko Y. Pasco M. Mejuch T. Gilboa N. Chechik H. Das J. P. J. Am. Chem. Soc. 2014;136:2682–2694. doi: 10.1021/ja410424g. - DOI - PubMed
    5. Hojoh K. Shido Y. Ohmiya H. Sawamura M. Angew. Chem., Int. Ed. 2014;53:4954–4958. doi: 10.1002/anie.201402386. - DOI - PubMed
    6. Lin J.-S. Li T.-T. Liu J.-R. Jiao G.-Y. Gu Q.-S. Cheng J.-T. Guo Y.-L. Hong X. Liu X.-Y. J. Am. Chem. Soc. 2019;141:1074–1083. doi: 10.1021/jacs.8b11736. - DOI - PubMed
    7. Ma D. Miao C.-B. Sun J. J. Am. Chem. Soc. 2019;141:13783–13787. doi: 10.1021/jacs.9b07514. - DOI - PubMed
    1. Zhao W. Wang Z. Chu B. Sun J. Angew. Chem., Int. Ed. 2015;54:1910–1913. doi: 10.1002/anie.201405252. - DOI - PubMed
    2. Wang Z. Wong Y. F. Sun J. Angew. Chem., Int. Ed. 2015;54:13711–13714. doi: 10.1002/anie.201506701. - DOI - PubMed
    3. Wang Z. Ai F. Wang Z. Zhao W. Zhu G. Lin Z. Sun J. J. Am. Chem. Soc. 2015;137:383–389. doi: 10.1021/ja510980d. - DOI - PubMed
    4. Li Z. Li Y. Li X. Wu M. He M.-L. Sun J. Chem. Sci. 2021;12:11793–11798. doi: 10.1039/D1SC03324G. - DOI - PMC - PubMed