Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates
- PMID: 36873849
- PMCID: PMC9977401
- DOI: 10.1039/d2sc05768a
Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates
Abstract
A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.
This journal is © The Royal Society of Chemistry.
Conflict of interest statement
There are no conflicts to declare.
Figures





References
-
- Caille S. Science. 2019;364:635. doi: 10.1126/science.aax2613. - DOI - PubMed
- Gerry C. J. Schreiber S. L. Nat. Rev. Drug Discovery. 2018;17:333–352. doi: 10.1038/nrd.2018.53. - DOI - PMC - PubMed
- Macarron R. Banks M. N. Bojanic D. Burns D. J. Cirovic D. A. Garyantes T. Green D. V. S. Hertzberg R. P. Janzen W. P. Paslay J. W. Schopfer U. Sittampalam G. S. Nat. Rev. Drug Discovery. 2011;10:188–195. doi: 10.1038/nrd3368. - DOI - PubMed
- Dandapani S. Marcaurelle L. A. Nat. Chem. Biol. 2010;6:861–863. doi: 10.1038/nchembio.479. - DOI - PubMed
-
- Rojas C. M., Molecular Rearrangements in Organic Synthesis, Wiley-VCH, New York, 2015
- Korb M. Lang H. Chem. Soc. Rev. 2019;48:2829–2882. doi: 10.1039/C8CS00830B. - DOI - PubMed
- Colomer I. Velado M. Fernandez de la Pradilla R. Viso A. Chem. Rev. 2017;117:14201–14243. doi: 10.1021/acs.chemrev.7b00428. - DOI - PubMed
- Tabolin A. A. Ioffe S. L. Chem. Rev. 2014;114:5426–5476. doi: 10.1021/cr400196x. - DOI - PubMed
- Leemans E. D'Hooghe M. De Kimpe N. Chem. Rev. 2011;111:3268–3333. doi: 10.1021/cr100295j. - DOI - PubMed
-
- Wang M.-M. Nguyen T. V. T. Waser J. Chem. Soc. Rev. 2022;51:7344–7357. doi: 10.1039/D2CS00090C. - DOI - PubMed
- Zhang Y. Chen J.-J. Huang H.-M. Angew. Chem., Int. Ed. 2022;61:e202205671. - PubMed
- Li J.-Z. Mei L. Yu X.-C. Wang L.-T. Cai X.-E. Li T. Wei W.-T. Org. Chem. Front. 2022;9:5726–5757. doi: 10.1039/D2QO01128J. - DOI
- Nobile E. Castanheiro T. Besset T. Angew. Chem., Int. Ed. 2021;60:12170–12191. doi: 10.1002/anie.202009995. - DOI - PubMed
- Sarkar S. Cheung K. P. S. Gevorgyan V. Chem. Sci. 2020;11:12974–12993. doi: 10.1039/D0SC04881J. - DOI - PMC - PubMed
-
- Zhang Y. Chen J.-J. Huang H.-M. Angew. Chem., Int. Ed. 2022;61:e202205671. - PubMed
- Allen A. R. Noten E. A. Stephenson C. R. J. Chem. Rev. 2022;122:2695–2751. doi: 10.1021/acs.chemrev.1c00388. - DOI - PMC - PubMed
- Wu X. Ma Z. Feng T. Zhu C. Chem. Soc. Rev. 2021;50:11577–11613. doi: 10.1039/D1CS00529D. - DOI - PubMed
- Allart-Simon I. Gerard S. Sapi J. Molecules. 2016;21:878. doi: 10.3390/molecules21070878. - DOI - PMC - PubMed
- Banerjee R. Chem. Rev. 2003;103:2083–2094. doi: 10.1021/cr0204395. - DOI - PubMed
- Adam W. Heidenfelder T. Chem. Soc. Rev. 1999;28:359–365. doi: 10.1039/A903931G. - DOI
LinkOut - more resources
Full Text Sources