Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 2;14(9):2461-2466.
doi: 10.1039/d2sc05768a. eCollection 2023 Mar 1.

Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates

Affiliations

Intramolecular trapping of spiro radicals to produce unusual cyclization products from usual migration substrates

Jingming Zhang et al. Chem Sci. .

Abstract

A conceptually new methodology to give unusual cyclization products from usual migration substrates was disclosed. The highly complex and structurally important and valuable spirocyclic compounds were produced through radical addition, intramolecular cyclization and ring opening instead of usual migration to the di-functionalization products of olefins. Furthermore, a plausible mechanism was proposed based on a series of mechanistic studies including radical trapping, radical clock, verification experiments of intermediates, isotope labeling and KIE experiments.

PubMed Disclaimer

Conflict of interest statement

There are no conflicts to declare.

Figures

Scheme 1
Scheme 1. Design of radical-promoted addition/cyclization/ring-opening of 1,4-enynes. (a) Nevado's work: aryl migration/desulfonylation/H abstraction or cyclization; (b) Zhu's work: radical addition/distal functional group migration; (c) This work: radical addition/intramolecular cyclization/ring-opening.
Scheme 2
Scheme 2. Radical-trapping and clock experiments. (a) Radical-trapping experiments; (b) clock experiments. BHT: butylated hydroxytoluene.
Scheme 3
Scheme 3. Verification experiments of intermediates. (a) The monitoring of 42 and the desired product 3; (b) verification experiment of intermediate 43.
Scheme 4
Scheme 4. Isotope labeling and KIE experiments. (a) Isotope labeling experiments; (b) KIE experiments.
Scheme 5
Scheme 5. Proposed mechanism for this intramolecular trapping of the spiro radicals to produce unusual cyclization products from the usual migration substrates.

References

    1. Caille S. Science. 2019;364:635. doi: 10.1126/science.aax2613. - DOI - PubMed
    2. Gerry C. J. Schreiber S. L. Nat. Rev. Drug Discovery. 2018;17:333–352. doi: 10.1038/nrd.2018.53. - DOI - PMC - PubMed
    3. Macarron R. Banks M. N. Bojanic D. Burns D. J. Cirovic D. A. Garyantes T. Green D. V. S. Hertzberg R. P. Janzen W. P. Paslay J. W. Schopfer U. Sittampalam G. S. Nat. Rev. Drug Discovery. 2011;10:188–195. doi: 10.1038/nrd3368. - DOI - PubMed
    4. Dandapani S. Marcaurelle L. A. Nat. Chem. Biol. 2010;6:861–863. doi: 10.1038/nchembio.479. - DOI - PubMed
    1. Rojas C. M., Molecular Rearrangements in Organic Synthesis, Wiley-VCH, New York, 2015
    2. Korb M. Lang H. Chem. Soc. Rev. 2019;48:2829–2882. doi: 10.1039/C8CS00830B. - DOI - PubMed
    3. Colomer I. Velado M. Fernandez de la Pradilla R. Viso A. Chem. Rev. 2017;117:14201–14243. doi: 10.1021/acs.chemrev.7b00428. - DOI - PubMed
    4. Tabolin A. A. Ioffe S. L. Chem. Rev. 2014;114:5426–5476. doi: 10.1021/cr400196x. - DOI - PubMed
    5. Leemans E. D'Hooghe M. De Kimpe N. Chem. Rev. 2011;111:3268–3333. doi: 10.1021/cr100295j. - DOI - PubMed
    1. Ramazani A. Moradnia F. Aghahosseini H. Abdolmaleki I. Curr. Org. Chem. 2017;21:1612–1625.
    2. Snape T. J. Chem. Soc. Rev. 2008;37:2452–2458. doi: 10.1039/B808960D. - DOI - PubMed
    1. Wang M.-M. Nguyen T. V. T. Waser J. Chem. Soc. Rev. 2022;51:7344–7357. doi: 10.1039/D2CS00090C. - DOI - PubMed
    2. Zhang Y. Chen J.-J. Huang H.-M. Angew. Chem., Int. Ed. 2022;61:e202205671. - PubMed
    3. Li J.-Z. Mei L. Yu X.-C. Wang L.-T. Cai X.-E. Li T. Wei W.-T. Org. Chem. Front. 2022;9:5726–5757. doi: 10.1039/D2QO01128J. - DOI
    4. Nobile E. Castanheiro T. Besset T. Angew. Chem., Int. Ed. 2021;60:12170–12191. doi: 10.1002/anie.202009995. - DOI - PubMed
    5. Sarkar S. Cheung K. P. S. Gevorgyan V. Chem. Sci. 2020;11:12974–12993. doi: 10.1039/D0SC04881J. - DOI - PMC - PubMed
    1. Zhang Y. Chen J.-J. Huang H.-M. Angew. Chem., Int. Ed. 2022;61:e202205671. - PubMed
    2. Allen A. R. Noten E. A. Stephenson C. R. J. Chem. Rev. 2022;122:2695–2751. doi: 10.1021/acs.chemrev.1c00388. - DOI - PMC - PubMed
    3. Wu X. Ma Z. Feng T. Zhu C. Chem. Soc. Rev. 2021;50:11577–11613. doi: 10.1039/D1CS00529D. - DOI - PubMed
    4. Allart-Simon I. Gerard S. Sapi J. Molecules. 2016;21:878. doi: 10.3390/molecules21070878. - DOI - PMC - PubMed
    5. Banerjee R. Chem. Rev. 2003;103:2083–2094. doi: 10.1021/cr0204395. - DOI - PubMed
    6. Adam W. Heidenfelder T. Chem. Soc. Rev. 1999;28:359–365. doi: 10.1039/A903931G. - DOI