Mechanisms of cancer cell death induction by triptolide
- PMID: 36876465
- DOI: 10.1002/biof.1944
Mechanisms of cancer cell death induction by triptolide
Abstract
Drug resistance is a hot topic issue in cancer research and therapy. Although cancer therapy including radiotherapy and anti-cancer drugs can kill malignant cells within the tumor, cancer cells can develop a wide range of mechanisms to resist the toxic effects of anti-cancer agents. Cancer cells may provide some mechanisms to resist oxidative stress and escape from apoptosis and attack by the immune system. Furthermore, cancer cells may resist senescence, pyroptosis, ferroptosis, necroptosis, and autophagic cell death by modulating several critical genes. The development of these mechanisms leads to resistance to anti-cancer drugs and also radiotherapy. Resistance to therapy can increase mortality and reduce survival following cancer therapy. Thus, overcoming mechanisms of resistance to cell death in malignant cells can facilitate tumor elimination and increase the efficiency of anti-cancer therapy. Natural-derived molecules are intriguing agents that may be suggested to be used as an adjuvant in combination with other anticancer drugs or radiotherapy to sensitize cancer cells to therapy with at least side effects. This paper aims to review the potential of triptolide for inducing various types of cell death in cancer cells. We review the induction or resistance to different cell death mechanisms such as apoptosis, autophagic cell death, senescence, pyroptosis, ferroptosis, and necrosis following the administration of triptolide. We also review the safety and future perspectives for triptolide and its derivatives in experimental and human studies. The anticancer potential of triptolide and its derivatives may make them effective adjuvants for enhancing tumor suppression in combination with anticancer therapy.
Keywords: apoptosis; cancer; cancer resistance; cell death; triptolide.
© 2023 International Union of Biochemistry and Molecular Biology.
References
REFERENCES
-
- Nanayakkara AK, Follit CA, Chen G, Williams NS, Vogel PD, Wise JG. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci Rep. 2018;8:967.
-
- Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci. 2020;21(9):3233.
-
- Schirrmacher V. From chemotherapy to biological therapy: a review of novel concepts to reduce the side effects of systemic cancer treatment. Int J Oncol. 2019;54:407-19.
-
- Yang R, Tan C, Najafi M. Cardiac inflammation and fibrosis following chemo/radiation therapy: mechanisms and therapeutic agents. Inflammopharmacology. 2022;30:73-89.
-
- Nikolaou M, Pavlopoulou A, Georgakilas AG, Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018;35:309-18.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
