Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Apr 24;62(18):e202218854.
doi: 10.1002/anie.202218854. Epub 2023 Mar 24.

Inverse CO2 /C2 H2 Separation with MFU-4 and Selectivity Reversal via Postsynthetic Ligand Exchange

Affiliations

Inverse CO2 /C2 H2 Separation with MFU-4 and Selectivity Reversal via Postsynthetic Ligand Exchange

Qiao Liu et al. Angew Chem Int Ed Engl. .

Abstract

Although many porous materials, including metal-organic frameworks (MOFs), have been reported to selectively adsorb C2 H2 in C2 H2 /CO2 separation processes, CO2 -selective sorbents are much less common. Here, we report the remarkable performance of MFU-4 (Zn5 Cl4 (bbta)3 , bbta=benzo-1,2,4,5-bistriazolate) toward inverse CO2 /C2 H2 separation. The MOF facilitates kinetic separation of CO2 from C2 H2 , enabling the generation of high purity C2 H2 (>98 %) with good productivity in dynamic breakthrough experiments. Adsorption kinetics measurements and computational studies show C2 H2 is excluded from MFU-4 by narrow pore windows formed by Zn-Cl groups. Postsynthetic F- /Cl- ligand exchange was used to synthesize an analogue (MFU-4-F) with expanded pore apertures, resulting in equilibrium C2 H2 /CO2 separation with reversed selectivity compared to MFU-4. MFU-4-F also exhibits a remarkably high C2 H2 adsorption capacity (6.7 mmol g-1 ), allowing fuel grade C2 H2 (98 % purity) to be harvested from C2 H2 /CO2 mixtures by room temperature desorption.

Keywords: Acetylene; CO2; Inverse Separation; Metal-Organic Frameworks; Molecular Sieving.

PubMed Disclaimer

References

    1. N. Kumar, S. Mukherjee, N. C. Harvey-Reid, A. A. Bezrukov, K. Tan, V. Martins, M. Vandichel, T. Pham, L. M. van Wyk, K. Oyekan, A. Kumar, K. A. Forrest, K. M. Patil, L. J. Barbour, B. Space, Y. Huang, P. E. Kruger, M. J. Zaworotko, Chem 2021, 7, 3085-3098.
    1. P. Pässler, W. Hefner, K. Buckl, H. Meinass, A. Meiswinkel, H.-J. Wernicke, G. Ebersberg, R. Müller, J. Bässler, H. Behringer, D. Mayer, Ullmann's Encycl. Ind. Chem., Wiley-VCH, Weinheim, 2011, pp. 277-326.
    1. R.-B. Lin, S. Xiang, W. Zhou, B. Chen, Chem 2020, 6, 337-363.
    1. G. Verma, J. Ren, S. Kumar, S. Ma, Eur. J. Inorg. Chem. 2021, 4498-4507.
    1. S. Liu, X. Han, Y. Chai, G. Wu, W. Li, J. Li, I. da Silva, P. Manuel, Y. Cheng, L. L. Daemen, A. J. Ramirez-Cuesta, W. Shi, N. Guan, S. Yang, L. Li, Angew. Chem. Int. Ed. 2021, 60, 6526-6532;

LinkOut - more resources