Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 20;62(11):4476-4484.
doi: 10.1021/acs.inorgchem.2c04136. Epub 2023 Mar 9.

Graphene Oxide-Mediated Synthesis of Ultrathin Co-MOL for CO2 Photoreduction

Affiliations

Graphene Oxide-Mediated Synthesis of Ultrathin Co-MOL for CO2 Photoreduction

Wen-Xiong Shi et al. Inorg Chem. .

Abstract

Metal-organic framework (MOF) materials have broad application prospects in catalysis because of their ordered structure and molecular adjustability. However, the large volume of bulky MOF usually leads to insufficient exposure of the active sites and the obstruction of charge/mass transfer, which greatly limits their catalytic performance. Herein, we developed a simple graphene oxide (GO) template method to fabricate ultrathin Co-metal-organic layer (2.0 nm) on reduced GO (Co-MOL@r-GO). The as-synthesized hybrid material Co-MOL@r-GO-2 exhibits highly efficient photocatalytic performance for CO2 reduction, and the CO yield can reach as high as 25,442 μmol/gCo-MOL, which is over 20 times higher than that of the bulky Co-MOF. Systematic investigations demonstrate that GO can act as a template for the synthesis of the ultrathin Co-MOL with more active sites and can be used as the electron transport medium between the photosensitizer and the Co-MOL to enhance the catalytic activity for CO2 photoreduction.

PubMed Disclaimer

LinkOut - more resources