Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
[Preprint]. 2023 Mar 1:2023.02.28.530457.
doi: 10.1101/2023.02.28.530457.

Genetic Predisposition to Neuroblastoma Results from a Regulatory Polymorphism that Promotes the Adrenergic Cell State

Genetic Predisposition to Neuroblastoma Results from a Regulatory Polymorphism that Promotes the Adrenergic Cell State

Nina Weichert-Leahey et al. bioRxiv. .

Update in

Abstract

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like "mesenchymal" cell state and a more differentiated sympathetic "adrenergic" cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional co-factor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism G/T that affects a G ATA motif in the first intron of LMO1. Here we show that wild-type zebrafish with the G ATA genotype develop adrenergic neuroblastoma, while knock-in of the protective T ATA allele at this locus reduces the penetrance of MYCN-driven tumors, which are restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrates that T ATA/ T ATA tumors also exhibit a mesenchymal cell state and are low risk at diagnosis. Thus, conversion of the regulatory G ATA to a T ATA allele in the first intron of LMO1 reduces the neuroblastoma initiation rate by preventing formation of the adrenergic cell state, a mechanism that is conserved over 400 million years of evolution separating zebrafish and humans.

PubMed Disclaimer

Publication types