Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2023 Feb 24:10:1102711.
doi: 10.3389/fsurg.2023.1102711. eCollection 2023.

The development of machine learning in bariatric surgery

Affiliations
Review

The development of machine learning in bariatric surgery

Bassey Enodien et al. Front Surg. .

Erratum in

Abstract

Background: Machine learning (ML), is an approach to data analysis that makes the process of analytical model building automatic. The significance of ML stems from its potential to evaluate big data and achieve quicker and more accurate outcomes. ML has recently witnessed increased adoption in the medical domain. Bariatric surgery, otherwise referred to as weight loss surgery, reflects the series of procedures performed on people demonstrating obesity. This systematic scoping review aims to explore the development of ML in bariatric surgery.

Methods: The study used the Preferred Reporting Items for Systematic and Meta-analyses for Scoping Review (PRISMA-ScR). A comprehensive literature search was performed of several databases including PubMed, Cochrane, and IEEE, and search engines namely Google Scholar. Eligible studies included journals published from 2016 to the current date. The PRESS checklist was used to evaluate the consistency demonstrated during the process.

Results: A total of seventeen articles qualified for inclusion in the study. Out of the included studies, sixteen concentrated on the role of ML algorithms in prediction, while one addressed ML's diagnostic capacity. Most articles (n = 15) were journal publications, whereas the rest (n = 2) were papers from conference proceedings. Most included reports were from the United States (n = 6). Most studies addressed neural networks, with convolutional neural networks as the most prevalent. Also, the data type used in most articles (n = 13) was derived from hospital databases, with very few articles (n = 4) collecting original data via observation.

Conclusions: This study indicates that ML has numerous benefits in bariatric surgery, however its current application is limited. The evidence suggests that bariatric surgeons can benefit from ML algorithms since they will facilitate the prediction and evaluation of patient outcomes. Also, ML approaches to enhance work processes by making data categorization and analysis easier. However, further large multicenter studies are required to validate results internally and externally as well as explore and address limitations of ML application in bariatric surgery.

Keywords: ML algorithms; bariatric sugery; machine learning; systematic scoping review; weight loss surgery.

PubMed Disclaimer

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1
Figure 1
PRISMA diagram.

References

    1. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. (2019) 380(14):1347–58. 10.1056/NEJMra1814259 - DOI - PubMed
    1. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. (2019) 19(1):64. 10.1186/s12874-019-0681-4 - DOI - PMC - PubMed
    1. McCradden MD, Joshi S, Mazwi M, Anderson JA. Ethical limitations of algorithmic fairness solutions in health care machine learning. Lancet Digit Health. (2020) 2(5):e221–3. 10.1016/S2589-7500(20)30065-0 - DOI - PubMed
    1. Arterburn DE, Telem DA, Kushner RF, Courcoulas AP. Benefits and risks of bariatric surgery in adults. JAMA. (2020) 324(9):879. 10.1001/jama.2020.12567 - DOI - PubMed
    1. Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. (2015) 13:8–17. 10.1016/j.csbj.2014.11.005 - DOI - PMC - PubMed

LinkOut - more resources