Tissue-specific regulation of gene expression via unproductive splicing
- PMID: 36912101
- PMCID: PMC10123112
- DOI: 10.1093/nar/gkad161
Tissue-specific regulation of gene expression via unproductive splicing
Abstract
Eukaryotic gene expression is regulated post-transcriptionally by a mechanism called unproductive splicing, in which mRNA is triggered to degrade by the nonsense-mediated decay (NMD) pathway as a result of regulated alternative splicing (AS). Only a few dozen unproductive splicing events (USEs) are currently documented, and many more remain to be identified. Here, we analyzed RNA-seq experiments from the Genotype-Tissue Expression (GTEx) Consortium to identify USEs, in which an increase in the NMD isoform splicing rate is accompanied by tissue-specific down-regulation of the host gene. To characterize RNA-binding proteins (RBPs) that regulate USEs, we superimposed these results with RBP footprinting data and experiments on the response of the transcriptome to the perturbation of expression of a large panel of RBPs. Concordant tissue-specific changes between the expression of RBP and USE splicing rate revealed a high-confidence regulatory network including 27 tissue-specific USEs with strong evidence of RBP binding. Among them, we found previously unknown PTBP1-controlled events in the DCLK2 and IQGAP1 genes, for which we confirmed the regulatory effect using small interfering RNA (siRNA) knockdown experiments in the A549 cell line. In sum, we present a transcriptomic pipeline that allows the identification of tissue-specific USEs, potentially many more than were reported here using stringent filters.
© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research.
Figures
References
-
- Lykke-Andersen S., Jensen T.H.. Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat. Rev. Mol. Cell Biol. 2015; 16:665–677. - PubMed
-
- Medghalchi S.M., Frischmeyer P.A., Mendell J.T., Kelly A.G., Lawler A.M., Dietz H.C.. Rent1, a trans-effector of nonsense-mediated mRNA decay, is essential for mammalian embryonic viability. Hum. Mol. Genet. 2001; 10:99–105. - PubMed
-
- Weischenfeldt J., Damgaard I., Bryder D., Theilgaard-Mönch K., Thoren L.A., Nielsen F.C., Jacobsen S.E., Nerlov C., Porse B.T.. NMD is essential for hematopoietic stem and progenitor cells and for eliminating by-products of programmed DNA rearrangements. Genes Dev. 2008; 22:1381–1396. - PMC - PubMed
-
- McIlwain D.R., Pan Q., Reilly P.T., Elia A.J., McCracken S., Wakeham A.C., Itie-Youten A., Blencowe B.J., Mak T.W.. Smg1 is required for embryogenesis and regulates diverse genes via alternative splicing coupled to nonsense-mediated mRNA decay. Proc. Natl Acad. Sci. USA. 2010; 107:12186–12191. - PMC - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous
