Identification of mouse metabolic variations related to patulin-induced acute and subacute hepatotoxicity by ultra-high-performance liquid chromatography high-resolution mass spectrometry
- PMID: 36914310
- DOI: 10.1016/j.foodres.2023.112546
Identification of mouse metabolic variations related to patulin-induced acute and subacute hepatotoxicity by ultra-high-performance liquid chromatography high-resolution mass spectrometry
Abstract
Patulin (PAT), a toxin produced by molds in fruits and related products, has caused frequent food poisoning incidents worldwide. However, its potential mechanism of hepatotoxicity remains presently unclear. Herein, we intragastrically administered the C57BL/6J mice with 0, 1, 4, and 16 mg/kg b.wt of PAT on a single occasion (acute model), and 0, 50, 200, and 800 μg/kg b.wt of PAT daily over two weeks (subacute model). Assessments of histopathology and aminotransferase activities confirmed that significant hepatic damages were induced. Metabolic profiling on the liver using ultra-high-performance liquid chromatography high-resolution mass spectrometry discovered 43 and 61 differential metabolites in two models, respectively. Notably, acute and subacute models shared the common 18 differential metabolites, among which N-acetyl-leucine, inosine, 2-O-methyladenosine, PC 40:7, PC 38:6, and PC 34:2 could be regarded as the biomarkers indicative of PAT exposure. Moreover, analysis of metabolic pathways demonstrated that pentose phosphate pathway and purine metabolism were the main altered pathways in the acute model. Nevertheless, more pathways related to amino acids were affected in the subacute model. These results reveal the comprehensive influence of PAT on hepatic metabolism and provide a deeper understanding of the hepatotoxicity mechanism of PAT.
Keywords: Acute liver injury; Metabolic pathway; Nontargeted metabolomics; Patulin; Subacute liver injury; UHPLC-HRMS.
Copyright © 2023 Elsevier Ltd. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
