Intravascular Imaging-Based Physiologic Assessment
- PMID: 36922069
- DOI: 10.1016/j.iccl.2022.12.006
Intravascular Imaging-Based Physiologic Assessment
Abstract
Intravascular imaging (IVI), including intravascular ultrasound (IVUS) and optical coherence tomography (OCT), is clinically useful for assessing the luminal size, lesion length, and plaque characteristics, as well as for evaluating stent deployment; however, it is not designed to estimate myocardial ischemia accurately. Thus, several types of IVI-derived fractional flow reserve (FFR) (IVI-derived FFR) have been developed and reported. In general, the algorithms of virtual FFR are based on basic fluid dynamics equations (mainly Poiseuille and Borda-Carnot equations) and original microvascular models (fixed velocity or calculating coronary flow reserve). Although the models and assumptions used in the past reports were mostly based on the standard population (not independent patient data), the developed software calculated FFR with high accuracy (88% to 94%) with strong correlations between IVI-derived FFR and wire-based FFR (0.69 to 0.89). Given several other less invasive virtual FFR methods currently available for clinical use, IVI-derived FFR would be limited for the sole use of pre-percutaneous coronary intervention (PCI) physiological evaluation; however, it may play a unique role at PCI guidance and optimization, potentially allowing comprehensive and time/cost-saving assessment of both anatomical and physiological lesion properties using a single diagnostic device.
Keywords: Fluid dynamics; Intravascular ultrasound; Optical coherence tomography; Virtual fractional flow reserve.
Copyright © 2023 Elsevier Inc. All rights reserved.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
