Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Feb 26;11(6):1287-1298.
doi: 10.12998/wjcc.v11.i6.1287.

Hyperglycemia in COVID-19 infection without diabetes mellitus: Association with inflammatory markers

Affiliations

Hyperglycemia in COVID-19 infection without diabetes mellitus: Association with inflammatory markers

Harinivaas Shanmugavel Geetha et al. World J Clin Cases. .

Abstract

Background: New onset hyperglycemia is common in patients with severe coronavirus disease 2019 (COVID-19) infection. Cytokine storm due to COVID-19 infection is an essential etiology for new-onset hyperglycemia, but factors like direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced pancreatic β-cell failure have also been postulated to play a role.

Aim: We plan to investigate further the mechanisms underlying SARS-CoV-2 infection-induced hyperglycemia, particularly the rationale of the cytokine-induced hyperglycemia hypothesis, by evaluating the association between inflammatory markers and new onset hyperglycemia in non-diabetic patients with COVID-19 infection.

Methods: We conducted a retrospective case-control study on adults without diabetes mellitus hospitalized for COVID-19 infection. The serum levels of glucose and inflammatory markers at presentation before initiation of corticosteroid were collected. Hyperglycemia was defined as glucose levels ≥ 140 mg/dL. C-Reactive protein (CRP) ≥ 100 mg/L, ferritin ≥ 530 ng/mL, lactate dehydrogenase (LDH) ≥ 590 U/L, and D-dimer ≥ 0.5 mg/L were considered elevated. We used the χ 2 test for categorical variables and the Mann-Whitney U test for continuous variables and calculated the logistic regression for hyperglycemia.

Results: Of the 520 patients screened, 248 met the inclusion criteria. Baseline demographics were equally distributed between patients with hyperglycemia and those who were normoglycemic. Serum inflammatory markers in patients with or without new-onset hyperglycemia were elevated as follows: CRP (58.1% vs 65.6%, P = 0.29), ferritin (48.4% vs 34.9%, P = 0.14), D-dimer (37.1% vs 37.1%, P = 0.76) and LDH (19.4% vs 11.8%, P = 0.02). Logistic regression analysis showed LDH odds ratio (OR) = 1.623 (P = 0.256). We observed significantly higher mortality (24.2% vs 9.1%, P = 0.001; OR = 2.528, P = 0.024) and length of stay (8.89 vs 6.69, P = 0.026) in patients with hyperglycemia.

Conclusion: Our study showed no association between CRP, ferritin, LDH, D-dimer levels, and new-onset hyperglycemia in non-diabetic patients with COVID-19 infection. It also shows an increased mortality risk and length of stay in patients with hyperglycemia. With new-onset hyperglycemia being closely associated with poor prognostic indices, it becomes pivotal to understand the underlying pathophysiological mechanisms behind the SARS-CoV-2 infection-induced hyperglycemia. We conclude that the stress hyperglycemia hypothesis is not the only mechanism of SARS-CoV-2 infection-induced hyperglycemia but rather a multicausal pathogenesis leading to hyperglycemia that requires further research and understanding. This would help us improve not only the clinical outcomes of COVID-19 disease and inpatient hyperglycemia management but also understand the long-term effects of SARS-CoV-2 infection and further management.

Keywords: C-reactive protein; COVID-19; Diabetes mellitus; Hyperglycemia; Inflammatory markers; Mechanisms; Mortality; Severity.

PubMed Disclaimer

Conflict of interest statement

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Figures

Figure 1
Figure 1
Mechanisms of hyperglycemia in patients with severe acute respiratory syndrome–coronavirus–2 infection. ACE: Angiotensin converting enzyme; SARS-CoV-2: Severe acute respiratory syndrome-coronavirus–2.

References

    1. Li H, Tian S, Chen T, Cui Z, Shi N, Zhong X, Qiu K, Zhang J, Zeng T, Chen L, Zheng J. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19. Diabetes Obes Metab. 2020;22:1897–1906. - PMC - PubMed
    1. Khunti K, Del Prato S, Mathieu C, Kahn SE, Gabbay RA, Buse JB. COVID-19, Hyperglycemia, and New-Onset Diabetes. Diabetes Care. 2021;44:2645–2655. - PMC - PubMed
    1. Michalakis K, Ilias I. COVID-19 and hyperglycemia/diabetes. World J Diabetes. 2021;12:642–650. - PMC - PubMed
    1. Koozi H, Lengquist M, Frigyesi A. C-reactive protein as a prognostic factor in intensive care admissions for sepsis: A Swedish multicenter study. J Crit Care. 2020;56:73–79. - PubMed
    1. Ryoo SM, Han KS, Ahn S, Shin TG, Hwang SY, Chung SP, Hwang YJ, Park YS, Jo YH, Chang HL, Suh GJ, You KM, Kang GH, Choi SH, Lim TH, Kim WY Korean Shock Society (KoSS) Investigators. The usefulness of C-reactive protein and procalcitonin to predict prognosis in septic shock patients: A multicenter prospective registry-based observational study. Sci Rep. 2019;9:6579. - PMC - PubMed