On the heterogeneous glycosylation of the membranes of the trans Golgi network in rabbit luteal cells
- PMID: 3692918
- DOI: 10.1007/BF00492594
On the heterogeneous glycosylation of the membranes of the trans Golgi network in rabbit luteal cells
Abstract
In rabbit luteal cells the transmost element (G2) of the Golgi apparatus bears cytochemical resemblances to the limiting membrane of lysosomes and it was suggested that lysosomal membranes may originate from the above element. But in the normal Golgi apparatus it cannot be made out whether the considered molecules are indeed membrane bound. Perfusing the rabbit ovary with buffer containing monensin or ammonium chloride allowed to vesiculate the trans Golgi network (G2-G1) selectively. Controls showed a well-preserved ultrastructure. Parts of the limiting membrane of the vacuoles derived from the transmost reticulum (G2) were spiny coated and carried an osmiophilic inner layer. They also showed a heavy precipitate for acid phosphatase (AcPase) and were strongly stained with phosphotungstic acid (PTA) at low pH. By neutralizing the acidic groups, involved in the PTA-staining, it was possible to show that the same membranes were more heavily glycosylated. The MvB's and the limiting membrane of lysosomes showed the same staining characteristics. The other membrane domains revealed a gradient in PTA staining and in AcPase activity. It is concluded that the trans Golgi network (G2-G1) is an acidic compartment. The presence of differentially glycosylated membranes reveals a sorting mechanism for membranous components. The highly glycosylated membrane stretches seem to be involved in endocytosis and in the formation of lysosomal membranes.