Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Mar 3;130(9):098401.
doi: 10.1103/PhysRevLett.130.098401.

Aging by Near-Extinctions in Many-Variable Interacting Populations

Affiliations

Aging by Near-Extinctions in Many-Variable Interacting Populations

Thibaut Arnoulx de Pirey et al. Phys Rev Lett. .

Abstract

Models of many-species ecosystems, such as the Lotka-Volterra and replicator equations, suggest that these systems generically exhibit near-extinction processes, where population sizes go very close to zero for some time before rebounding, accompanied by a slowdown of the dynamics (aging). Here, we investigate the connection between near-extinction and aging by introducing an exactly solvable many-variable model, where the time derivative of each population size vanishes at both zero and some finite maximal size. We show that aging emerges generically when random interactions are taken between populations. Population sizes remain exponentially close (in time) to the absorbing values for extended periods of time, with rapid transitions between these two values. The mechanism for aging is different from the one at play in usual glassy systems: At long times, the system evolves in the vicinity of unstable fixed points rather than marginal ones.

PubMed Disclaimer

LinkOut - more resources