Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2023 Jul:641:251-264.
doi: 10.1016/j.jcis.2023.03.045. Epub 2023 Mar 11.

Diffusion of gold nanoparticles in porous silica monoliths determined by dynamic light scattering

Affiliations

Diffusion of gold nanoparticles in porous silica monoliths determined by dynamic light scattering

Wenchang Wu et al. J Colloid Interface Sci. 2023 Jul.

Abstract

Hypothesis: The applicability of the dynamic light scattering method for the determination of particle diffusivity under confinement without applying refractive index matching was not adequately explored so far. The confinement effect on particle diffusion in a porous material which is relevant for particle chromatography has also not yet been fully characterized.

Experiments: Dynamic light scattering experiments were performed for unimodal dispersions of 11-mercaptoundecanoic acid-capped gold nanoparticles. Diffusion coefficients of gold nanoparticles in porous silica monoliths were determined without limiting refractive index matching fluids. Comparative experiments were also performed with the same nanoparticles and porous silica monolith but applying refractive index matching.

Findings: Two distinct diffusivities could be determined inside the porous silica monolith, both smaller than that in free media, showing a slowing-down of the diffusion processes of nanoparticles under confinement. While the larger diffusivity can be related to the slightly slowed-down diffusion of particles in the bulk of the pores and in the necks connecting individual pores, the smaller diffusivity might be related to the diffusion of particles near the pore walls. It shows that the dynamic light scattering method with a heterodyne detection scheme can be used as a reliable and competitive tool for determining particle diffusion under confinement.

Keywords: Confinement; Diffusion; Dynamic light scattering; Gold nanoparticles; Porous material.

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources