Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: Progress towards non-viral systems
- PMID: 36940751
- DOI: 10.1016/j.addr.2023.114781
Gene therapy strategies for glaucoma from IOP reduction to retinal neuroprotection: Progress towards non-viral systems
Abstract
Glaucoma is the result of the gradual death of retinal ganglion cells (RGCs) whose axons form the optic nerve. Elevated intraocular pressure (IOP) is a major risk factor that contributes to RGC apoptosis and axonal loss at the lamina cribrosa, resulting in progressive reduction and eventual anterograde-retrograde transport blockade of neurotrophic factors. Current glaucoma management mainly focuses on pharmacological or surgical lowering of IOP, to manage the only modifiable risk factor. Although IOP reduction delays disease progression, it does not address previous and ongoing optic nerve degeneration. Gene therapy is a promising direction to control or modify genes involved in the pathophysiology of glaucoma. Both viral and non-viral gene therapy delivery systems are emerging as promising alternatives or add-on therapies to traditional treatments for improving IOP control and providing neuroprotection. The specific spotlight on non-viral gene delivery systems shows further progress toward improving the safety of gene therapy and implementing neuroprotection by targeting specific tissues and cells in the eye and specifically in the retina.
Keywords: BDNF; Gene therapy; Glaucoma; Neuroprotection; Non-viral gene delivery; Retina delivery.
Copyright © 2023 Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical